LOJ6437 PKUSC2018 PKUSC
带劲的计算几何【这一定是我WC之前开的最后一道计几!!!
每个点画个圆然后看一下交点 然后判断是多边形内还是多边形外
这个就是取圆上中点然后射线法
eps我1e-8才过 不知道为啥有的人说只能开1e-3
写了三天带劲= =
还有注意long double!附了一组数据~
//Love and Freedom.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 20021225
#define ll long long
#define eps 1e-8
#define mxn 510
#define db long double
using namespace std;
const db pi = acosl(-1.0);
struct poi
{
db x,y;
poi(){}
poi(db _x,db _y){x=_x,y=_y;}
};
typedef poi vec;
bool operator ==(vec a,vec b){return a.x==b.x&&a.y==b.y;}
vec operator +(vec a,vec b){return vec(a.x+b.x,a.y+b.y);}
vec operator -(vec a,vec b){return vec(a.x-b.x,a.y-b.y);}
vec operator *(vec a,db b){return vec(a.x*b,a.y*b);}
db cross(vec a,vec b){return a.x*b.y-a.y*b.x;}
db value(vec a,vec b){return a.x*b.x+a.y*b.y;}
db len(vec a){return a.x*a.x+a.y*a.y;}
db ang(vec a){return atan2(a.y,a.x);}
struct line
{
poi p; vec v; db ang;
line(){}
line(poi _p,poi _v)
{
p=_p; v=_v;
ang = atan2(v.y,v.x);
}
}li[mxn];
db cir[mxn]; int cnt,n,m;
poi mid[mxn];
db section(line a,line b)
{
db k = cross(a.v+a.p-b.p,a.p-b.p)/(cross(a.v+a.p-b.p,b.v)+cross(b.v,a.p-b.p));
return k;
}
void get(line a,db r)
{
db c = - r*r + len(a.p);
db aa = len(a.v);
db b = 2.0*(a.v.x*a.p.x+a.v.y*a.p.y);
db delta = b*b - 4.0 * aa * c;
if(delta < 0) return ;
delta = sqrt(delta);
db k1 = (-b + delta)/(2.0*aa);
if(abs(delta)<eps)
{
poi tmp = a.p+a.v*k1;
if(k1>-eps && k1-1.0<eps) cir[++cnt] =atan2(tmp.y,tmp.x);
return;
}
db k2 = (-b-delta)/(2.0*aa);
poi tmp = a.p+a.v*k1;
if(k1>-eps && k1-1.0<eps) cir[++cnt] = atan2(tmp.y,tmp.x);
tmp = a.p+a.v*k2;
if(k2>-eps && k2-1.0<eps) cir[++cnt] = atan2(tmp.y,tmp.x);
}
void put(poi a)
{
printf("p===%lf %lf\n",a.x,a.y);
}
void putl(line a)
{
printf("ls--------------\n");
put(a.p); put(a.v); printf("%lf\n",a.ang);
printf("le--------------\n");
}
bool between(line a,poi b)
{
int tmp=0;
if(a.v.x <= 0.0)
{
if(b.x <= a.p.x && b.x >= a.p.x+a.v.x) tmp++;
}
else
{
if(b.x >= a.p.x && b.x <= a.p.x+a.v.x) tmp++;
}
if(a.v.y <= 0.0)
{
if(b.y <= a.p.y && b.y >= a.p.y+a.v.y) tmp++;
}
else
{
if(b.y >= a.p.y && b.y <= a.p.y+a.v.y) tmp++;
}
return tmp==2;
}
bool check(poi x)
{
for(int i=1;i<=m;i++)
if(between(li[i],x) && abs(cross(x-li[i].p,li[i].v))<eps)
return 0;
int cer = 0;
line tmp = line(x,poi(2794406.11,-2564800.0132));
for(int i=1;i<=m;i++)
{
db w = section(tmp,li[i]);
db ww = section(li[i],tmp);
if( ww>1.0 || ww<0.0 || w>1.0 || w<0.0)
continue;
cer++;
}
if(cer&1) return 1;
return 0;
}
bool cmp(poi a,poi b)
{
return ang(a) < ang(b) || (abs(ang(a)-ang(b))<eps&& cross(a,b)>eps);
}
bool same(poi a,poi b)
{
return abs(a.x-b.x)<eps && abs(a.y-b.y) <eps;
}
poi enemy[mxn],stk[mxn];
db makecircle(int id,db r)
{
cnt = 0; db ans = 0.0;
for(int i=1;i<=m;i++)
get(li[i],r);
if(!cnt)
{
if(check(enemy[id])) return 2*pi;
return 0.0;
}
sort(cir+1,cir+cnt+1);
int tot = cnt; cnt=1;
for(int i=2;i<=tot;i++)
if(abs(cir[i]-cir[i-1])>eps)
cir[++cnt] = cir[i];
cir[cnt+1] = cir[1] + 2*pi;
for(int i=1;i<=cnt;i++)
{
db theta = (cir[i] + cir[i+1]); theta = theta/2.0;
mid[i] = vec(r*cosl(theta),r*sinl(theta));
}
if(cnt==2)
{
if(check(mid[1]))
{
db ang = cir[2] - cir[1];
ans += ang;
}
return ans;
}
for(int i=1;i<=cnt;i++)
{
if(check(mid[i]))
{
db ang = cir[i+1] - cir[i];
ans += ang;
}
}
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%Lf%Lf",&enemy[i].x,&enemy[i].y);
for(int i=1;i<=m;i++)
scanf("%Lf%Lf",&stk[i].x,&stk[i].y);
for(int i=1;i<m;i++)
li[i]=line(stk[i],stk[i+1]-stk[i]);
li[m] = line(stk[m],stk[1]-stk[m]);
db full,r,ans=0.0;
for(int i=1;i<=n;i++)
{
r = sqrtl(len(enemy[i]));
if(r<eps)
{
if(check(poi(0,0))) ans += 1.00000;
continue;
}
full = 2*pi;
ans += makecircle(i,r)/full;
}
printf("%.5Lf\n",ans);
return 0;
}
/**
1 7
1 1
2 1
-1 -1
-1 1
1 1
1 2
3 1
2 -1
*/
LOJ6437 PKUSC2018 PKUSC的更多相关文章
- 【loj6437】 【PKUSC2018】 PKUSC 计算几何
题目大意:给你一个m个点的简单多边形.对于每个点i∈[1,n],作一个以O点为原点且过点i的圆,求该圆在多边形内的圆弧长度/圆长. 其中n≤200,m≤500. 我们将n个点分开处理. 首先,我们要判 ...
- LOJ6437. 「PKUSC2018」PKUSC [计算几何]
LOJ 思路 显然多边形旋转可以变成点旋转,不同的点的贡献可以分开计算. 然后就变成了要求一个圆在多边形内的弧长. 考虑把交点全都求出来,那么两个交点之间的状态显然是相同的,可以直接把圆弧上的中点的状 ...
- [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC
[LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...
- 【LOJ】#6437. 「PKUSC2018」PKUSC
题解 我们把这个多边形三角形剖分了,和统计多边形面积一样 每个三角形有个点是原点,把原点所对应的角度算出来,记为theta 对于一个点,相当于半径为这个点到原点的一个圆,圆弧上的弧度为theta的一部 ...
- loj#6437. 「PKUSC2018」PKUSC(计算几何)
题面 传送门 题解 计算几何的东西我好像都已经忘光了-- 首先我们可以把原问题转化为另一个等价的问题:对于每一个敌人,我们以原点为圆心,画一个经过该点的圆,把这个圆在多边形内部的圆弧的度数加入答案.求 ...
- [LOJ6437]PKUSC
旋转多边形是没有前途的,我们考虑旋转敌人,那么答案就是所有人的可行区间长度之和除以$2\pi$ 首先对每个敌人找到那些旋转后会落到多边形上的角度,实际上就是圆和一些线段求交,解方程即可,注意判一下落在 ...
- 「PKUSC2018」PKUSC
传送门 Solution 考虑求每个点的贡献 等价于一个以OA长为半径的圆心为原点的圆在多边形内的弧对应的角度/\(2\pi\) 求弧度可以利用三角剖分 在原点的点要特判,采用射线法就可以了 Cod ...
- LOJ#6437. 「PKUSC2018」PKUSC
题面 题意转化为: 判断每个点所在的圆有多长的弧度角位于多边形内部. 然后就很暴力了. 每个点P,直接找到多边形和这个圆的所有交点,按照距离P的角度排序. 找交点,直接联立二元二次方程组.... 需要 ...
- 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)
[LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...
随机推荐
- web高拍仪图片上传
公司引进高拍仪,想拍完照片点上传按钮直接上传图片.高拍仪接口能提供照片的本地路径,现在的问题是不用file控件选择,只有路径,不知道如何上传到服务器,求解决方案. 方法: 使用泽优Web图片上传控件( ...
- 状压DP常用操作
1. 判断一个数字x二进制下第i位是不是等于1. 方法:if ( ( ( 1 << ( i - 1 ) ) & x ) > 0) 将1左移i-1位,相当于制造了一个只有第i位 ...
- CSS/CSS3常用的样式
强制文本显示 让一段文字在固定宽度在一行显示,最后一个字符为省略标记(...),css样式如下 单行显示语法:white-space:nowrap; div{ white-space:nowrap; ...
- if和switch的选择结构
1. Java中的if选择结构,包括以下形式. *基本if选择结构:可以处理一单一或组合条件的情况. *if-else选择结构:可以处理简单的条件分支情况. *多重if选择结构:可以处理连续区间的条件 ...
- sscanf sscanf_s使用
#include<stdio.h> 定义函数 int sscanf (const char *str,const char * format,........); 函数说明 sscanf ...
- HDU6599:求本质不同的子串(回文串)长度及数量
目录 hdu6599题意: manacher+后缀自动机+倍增 \(O(nlog(n))\) manacher+后缀数组+二分 \(O(nlog(n))\) 回文树(回文自动机) \(O(n)\) @ ...
- Codeforecs Round #425 D Misha, Grisha and Underground (倍增LCA)
D. Misha, Grisha and Underground time limit per test 2 seconds memory limit per test 256 megabytes i ...
- HDU 6024 Building Shops (简单dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6024 题意:有n个room在一条直线上,需要这这些room里面建造商店,如果第i个room建造,则要总 ...
- Centos7开机自动启动服务和联网
虚拟机设置选择NAT模式,默认情况下,Centos不是自动连接上网的,需要点击右上角,手动连接上网. 可以修改开机启动配置修改: 1. cd 到/etc/sysconfig/network-scrip ...
- DHCP服务器怎么设置怎么启动
DHCP:动态主机配置协议,服务器用于为网络中的客户端自动分配IP地址.这种方法避免了由于手动配置IP地址导致的IP地址冲突问题,同时也减少了网络管理员的工作量. 工具/原料 在配置DHCP服务器时, ...