传送门

发现 $A$ 不大,又允许较大的误差,考虑乱搞

考虑求出每个位置的答案,因为有 $1e5$ 个位置,所以每个位置差不多可以计算 $100$ 次贡献

所以把每个可以贡献的位置尽量均匀分成 $100$ 个块,同一个块内答案一起算

本来一个位置的贡献是 $m[i]m[j]/(i-j)$ ,那现在一个块的贡献就可以看成 $m[i](sum[r]-sum[l-1])/(i-mid)$,就是把一段的贡献放在一起算,下标就取中位数

这样误差就在 $5\%$ 以内了..

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
typedef double db;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=1e5+,T=;
const db eps=1e-;
int n,a[N],sum[N];
db A,ans[N];
int main()
{
n=read(); scanf("%lf",&A);
for(int i=;i<=n;i++) a[i]=read(),sum[i]=sum[i-]+a[i];
for(int i=;i<=n;i++)
{
int R=1.0*i*A+eps;
if(!R) continue;
if(R<=T) { for(int j=;j<=R;j++) ans[i]+=1.0*a[i]*a[j]/(i-j); continue; }
int l=,r,p=R/T,t=R%T;
for(int j=;j<=T;j++)
{
r=l+p-(j>t);
ans[i]+=1.0*a[i]*(sum[r]-sum[l-])/(i-(l+r)/);
l=r+;
}
}
for(int i=;i<=n;i++) printf("%.6lf\n",ans[i]);
return ;
}

P3198 [HNOI2008]遥远的行星的更多相关文章

  1. luogu P3198 [HNOI2008]遥远的行星

    bzoj 洛谷 这题意是不是不太清楚 真正题意:求\[f_i=\sum_{j=1}^{\lfloor i*A \rfloor} \frac{M_i*M_j}{i-j}\] 似乎只能\(O(n*\lfl ...

  2. bzoj1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2480  Solved ...

  3. 【bzoj1011】[HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 3711  Solved ...

  4. BZOJ 1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2559  Solved ...

  5. 1011: [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2241  Solved ...

  6. BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 4974  Solved ...

  7. BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 5058  Solve ...

  8. [HNOI2008]遥远的行星

    题目描述 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行 ...

  9. BZOJ1011:[HNOI2008]遥远的行星(乱搞)

    Description 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...

随机推荐

  1. C# 之 数组倒叙排列

    //倒叙排列 string temp=""; ; i < strlist.Length / ; i++) { temp = strlist[i]; strlist[i] = ...

  2. [转] Linux多线程编程之pthread

    转载出处:https://blog.csdn.net/skyroben/article/details/72793409 1.背景知识 Linux没有真正意义上的线程,它的实现是由进程来模拟,所以属于 ...

  3. python3.x使用cxfreeze将.p打包成.exe

    之前写了一个使用ffplay批量查看格式为h264的图片,每次抽帧后都要打开pycharm编译器来运行程序,然后才能正常查看图片,或者在其他没有安装python环境的电脑中运行,很不方便.为此,在网上 ...

  4. Spring Cloud Config教程(四)快速开始

    Spring Cloud Config为分布式系统中的外部配置提供服务器和客户端支持.使用Config Server,您可以在所有环境中管理应用程序的外部属性.客户端和服务器上的概念映射与Spring ...

  5. 哈夫曼(Huffman)树及其应用

    Huffman树又称最优树,是一类带权路径长度最短的树,带权路径长度为从该节点到树根之间的路径长度与节点上权值的成积. 那么如何构建一个Huffman树呢?就需要Huffman算法 1.利用给定的n个 ...

  6. 高级软件测试技术-小组任务分配和安排-Day01

    任务分配11-13 使用的工具 Jira 小组成员 华同学.郭同学.穆同学.沈同学.覃同学.刘同学 任务划分 1.撰写工具使用手册,要求在手册中至少说明如下内容: a. 该工具的基本情况,如名称,提供 ...

  7. 案例ORA-00600: internal error code, arguments: [qkaffsindex3], [], [], [], []

    执行更新统计信息语句: exec dbms_stats.gather_schema_stats(ownname=>'LIVE_KS',degree=>2,cascade=>true, ...

  8. 【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)

    目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布, ...

  9. 2014过去了,正式步入职场了,.net

    一.第一家公司(北京XXXXXXX) 从2014年7月1号拿到学位证,到7月15号到北京,努力找工作,用了两个多礼拜,终于找到了一个只有三个人的公司,愿意要我,薪资是实习三千,转正四千. 2014年7 ...

  10. c++实验9 图及图的操作实验

    实验9 图及图的操作实验 --博客后半部分有程序的所有代码-- 1.图邻接矩阵存储结构表示及基本操作算法实现 (1)邻接矩阵存储结构类定义: #include "SeqList.h" ...