spark streaming kafka1.4.1中的低阶api createDirectStream使用总结
转载:http://blog.csdn.net/ligt0610/article/details/47311771
由于目前每天需要从kafka中消费20亿条左右的消息,集群压力有点大,会导致job不同程度的异常退出。原来使用spark1.1.0版本中的createStream函数,但是在数据处理速度跟不上数据消费速度且job异常退出的情况下,可能造成大量的数据丢失。幸好,Spark后续版本对这一情况有了很大的改进,1.2版本加入WAL特性,但是性能应该会受到一些影响(本人未测试),1.3版本可以直接通过低阶API从kafka的topic消费消息,并且不再向zookeeper中更新consumer offsets,使得基于zookeeper的consumer offsets的监控工具都会失效。
官方只是非常简单的描述了可以用以下方法修改zookeeper中的consumer offsets(可以查看http://spark.apache.org/docs/1.4.1/streaming-kafka-integration.html):
// Hold a reference to the current offset ranges, so it can be used downstream
var offsetRanges = Array[OffsetRange]() directKafkaStream.transform { rdd =>
offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
rdd
}.map {
...
}.foreachRDD { rdd =>
for (o <- offsetRanges) {
println(s"${o.topic} ${o.partition} ${o.fromOffset} ${o.untilOffset}")
}
...
}
所以更新zookeeper中的consumer offsets还需要自己去实现,并且官方提供的两个createDirectStream重载并不能很好的满足我的需求,需要进一步封装。具体看以下KafkaManager类的代码:
package org.apache.spark.streaming.kafka import kafka.common.TopicAndPartition
import kafka.message.MessageAndMetadata
import kafka.serializer.Decoder
import org.apache.spark.SparkException
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.KafkaCluster.{LeaderOffset} import scala.reflect.ClassTag /**
* Created by knowpigxia on 15-8-5.
*/
class KafkaManager(val kafkaParams: Map[String, String]) extends Serializable { private val kc = new KafkaCluster(kafkaParams) /**
* 创建数据流
* @param ssc
* @param kafkaParams
* @param topics
* @tparam K
* @tparam V
* @tparam KD
* @tparam VD
* @return
*/
def createDirectStream[K: ClassTag, V: ClassTag, KD <: Decoder[K]: ClassTag, VD <: Decoder[V]: ClassTag](
ssc: StreamingContext, kafkaParams: Map[String, String], topics: Set[String]): InputDStream[(K, V)] = {
val groupId = kafkaParams.get("group.id").get
// 在zookeeper上读取offsets前先根据实际情况更新offsets
setOrUpdateOffsets(topics, groupId) //从zookeeper上读取offset开始消费message
val messages = {
val partitionsE = kc.getPartitions(topics)
if (partitionsE.isLeft)
throw new SparkException(s"get kafka partition failed: ${partitionsE.left.get}")
val partitions = partitionsE.right.get
val consumerOffsetsE = kc.getConsumerOffsets(groupId, partitions)
if (consumerOffsetsE.isLeft)
throw new SparkException(s"get kafka consumer offsets failed: ${consumerOffsetsE.left.get}")
val consumerOffsets = consumerOffsetsE.right.get
KafkaUtils.createDirectStream[K, V, KD, VD, (K, V)](
ssc, kafkaParams, consumerOffsets, (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message))
}
messages
} /**
* 创建数据流前,根据实际消费情况更新消费offsets
* @param topics
* @param groupId
*/
private def setOrUpdateOffsets(topics: Set[String], groupId: String): Unit = {
topics.foreach(topic => {
var hasConsumed = true
val partitionsE = kc.getPartitions(Set(topic))
if (partitionsE.isLeft)
throw new SparkException(s"get kafka partition failed: ${partitionsE.left.get}")
val partitions = partitionsE.right.get
val consumerOffsetsE = kc.getConsumerOffsets(groupId, partitions)
if (consumerOffsetsE.isLeft) hasConsumed = false
if (hasConsumed) {// 消费过
/**
* 如果streaming程序执行的时候出现kafka.common.OffsetOutOfRangeException,
* 说明zk上保存的offsets已经过时了,即kafka的定时清理策略已经将包含该offsets的文件删除。
* 针对这种情况,只要判断一下zk上的consumerOffsets和earliestLeaderOffsets的大小,
* 如果consumerOffsets比earliestLeaderOffsets还小的话,说明consumerOffsets已过时,
* 这时把consumerOffsets更新为earliestLeaderOffsets
*/
val earliestLeaderOffsetsE = kc.getEarliestLeaderOffsets(partitions)
if (earliestLeaderOffsetsE.isLeft)
throw new SparkException(s"get earliest leader offsets failed: ${earliestLeaderOffsetsE.left.get}")
val earliestLeaderOffsets = earliestLeaderOffsetsE.right.get
val consumerOffsets = consumerOffsetsE.right.get // 可能只是存在部分分区consumerOffsets过时,所以只更新过时分区的consumerOffsets为earliestLeaderOffsets
var offsets: Map[TopicAndPartition, Long] = Map()
consumerOffsets.foreach({ case(tp, n) =>
val earliestLeaderOffset = earliestLeaderOffsets(tp).offset
if (n < earliestLeaderOffset) {
println("consumer group:" + groupId + ",topic:" + tp.topic + ",partition:" + tp.partition +
" offsets已经过时,更新为" + earliestLeaderOffset)
offsets += (tp -> earliestLeaderOffset)
}
})
if (!offsets.isEmpty) {
kc.setConsumerOffsets(groupId, offsets)
}
} else {// 没有消费过
val reset = kafkaParams.get("auto.offset.reset").map(_.toLowerCase)
var leaderOffsets: Map[TopicAndPartition, LeaderOffset] = null
if (reset == Some("smallest")) {
val leaderOffsetsE = kc.getEarliestLeaderOffsets(partitions)
if (leaderOffsetsE.isLeft)
throw new SparkException(s"get earliest leader offsets failed: ${leaderOffsetsE.left.get}")
leaderOffsets = leaderOffsetsE.right.get
} else {
val leaderOffsetsE = kc.getLatestLeaderOffsets(partitions)
if (leaderOffsetsE.isLeft)
throw new SparkException(s"get latest leader offsets failed: ${leaderOffsetsE.left.get}")
leaderOffsets = leaderOffsetsE.right.get
}
val offsets = leaderOffsets.map {
case (tp, offset) => (tp, offset.offset)
}
kc.setConsumerOffsets(groupId, offsets)
}
})
} /**
* 更新zookeeper上的消费offsets
* @param rdd
*/
def updateZKOffsets(rdd: RDD[(String, String)]) : Unit = {
val groupId = kafkaParams.get("group.id").get
val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges for (offsets <- offsetsList) {
val topicAndPartition = TopicAndPartition(offsets.topic, offsets.partition)
val o = kc.setConsumerOffsets(groupId, Map((topicAndPartition, offsets.untilOffset)))
if (o.isLeft) {
println(s"Error updating the offset to Kafka cluster: ${o.left.get}")
}
}
}
}
接下来再给一个简单的例子:
import kafka.serializer.StringDecoder
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.kafka._
import org.apache.spark.streaming.{Seconds, StreamingContext} /**
* Created by knowpigxia on 15-8-4.
*/
object DirectKafkaWordCount { def dealLine(line: String): String = {
val list = AnalysisUtil.dealString(line, ',', '"')// 把dealString函数当做split即可
list.get().substring(, ) + "-" + list.get()
} def processRdd(rdd: RDD[(String, String)]): Unit = {
val lines = rdd.map(_._2)
val words = lines.map(dealLine(_))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.foreach(println)
} def main(args: Array[String]) {
if (args.length < ) {
System.err.println( s"""
|Usage: DirectKafkaWordCount <brokers> <topics> <groupid>
| <brokers> is a list of one or more Kafka brokers
| <topics> is a list of one or more kafka topics to consume from
| <groupid> is a consume group
|
""".stripMargin)
System.exit()
} Logger.getLogger("org").setLevel(Level.WARN) val Array(brokers, topics, groupId) = args // Create context with 2 second batch interval
val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount")
sparkConf.setMaster("local[*]")
sparkConf.set("spark.streaming.kafka.maxRatePerPartition", "")
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val ssc = new StreamingContext(sparkConf, Seconds()) // Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
val kafkaParams = Map[String, String](
"metadata.broker.list" -> brokers,
"group.id" -> groupId,
"auto.offset.reset" -> "smallest"
) val km = new KafkaManager(kafkaParams) val messages = km.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicsSet) messages.foreachRDD(rdd => {
if (!rdd.isEmpty()) {
// 先处理消息
processRdd(rdd)
// 再更新offsets
km.updateZKOffsets(rdd)
}
}) ssc.start()
ssc.awaitTermination()
}
}
spark streaming kafka1.4.1中的低阶api createDirectStream使用总结的更多相关文章
- 2、 Spark Streaming方式从socket中获取数据进行简单单词统计
Spark 1.5.2 Spark Streaming 学习笔记和编程练习 Overview 概述 Spark Streaming is an extension of the core Spark ...
- TensorFlow低阶API(四)—— 图和会话
简介 TensorFlow使用数据流图将计算表示为独立的指令之间的依赖关系.这可生成低级别的编程模型,在该模型中,您首先定义数据流图,然后创建TensorFlow会话,以便在一组本地和远程设备上运行图 ...
- TensorFlow低阶API(一)—— 简介
简介 本文旨在知道您使用低级别TensorFlow API(TensorFlow Core)开始编程.您可以学习执行以下操作: 管理自己的TensorFlow程序(tf.Graph)和TensorFl ...
- TensorFlow低阶API(二)—— 张量
简介 正如名字所示,TensorFlow这一框架定义和运行涉及张量的计算.张量是对矢量和矩阵向潜在的更高维度的泛化.TensorFlow在内部将张量表示为基本数据类型的n维数组. 在编写TensorF ...
- TebsorFlow低阶API(五)—— 保存和恢复
简介 tf.train.Saver 类提供了保存和恢复模型的方法.通过 tf.saved_model.simple_save 函数可以轻松地保存适合投入使用的模型.Estimator会自动保存和恢复 ...
- TensorFlow低阶API(三)—— 变量
简介 TensorFlow变量是表示程序处理的共享持久状态的最佳方法. 我们使用tf.Variable类操作变量.tf.Variable表示可通过其运行操作来改变其值的张量.与tf.Tensor对象不 ...
- 大数据技术之_27_电商平台数据分析项目_02_预备知识 + Scala + Spark Core + Spark SQL + Spark Streaming + Java 对象池
第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark ...
- 【转】Spark Streaming 实时计算在甜橙金融监控系统中的应用及优化
系统架构介绍 整个实时监控系统的架构是先由 Flume 收集服务器产生的日志 Log 和前端埋点数据, 然后实时把这些信息发送到 Kafka 分布式发布订阅消息系统,接着由 Spark Streami ...
- Spark踩坑记——Spark Streaming+Kafka
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...
随机推荐
- 查看mysql表结构的几种方法
desc 表名; show columns from 表名; describe 表名; show create table 表名; use information_schemaselect * fro ...
- Regional Changchun Online--Travel(最小生成树&& 并查集)
Travel Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total S ...
- ubuntu中VNC的安装配置笔记
使用服务器时,利用远程桌面是非常方便的,否则需要跑到服务器机房操作非常的费事,或者需要远程操作机器是也可以使用,一般的操作系统都会带有远程桌面功能,但是不如第三方的的软件好用,对于linux系统常用的 ...
- 文件处理函数fopen、fread、fseek、fclose的使用实例介绍
FILE文件流用于对文件的快速操作,主要的操作函数有fopen.fseek.fread.fclose,在对文件结构比较清楚时使用这几个函数会比较快捷的得到文件中具体位置的数据,提取对我们有用的信息,满 ...
- Codeforces Round #218 (Div. 2) C. Hamburgers
C. Hamburgers time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- 基于jQuery的web在线流程图设计器GooFlow
简易的流程图设计控件,效果图: JavaScript源文件在GooFlow.js中,样式文件是GooFlow2.css.可以自定义样式. GooFlow_item类是每个项的样式属性. 但估计实现任务 ...
- Windows环境Mycat数据库分库分表中间件部署
下载地址MYCAT官方网站 jdk安装配置 首先去oracle官网下载并安装jdk8,添加环境变量,JAVA_HOME设置为D:\Worksoftware\Java\jdk1.8 CLASSPATH设 ...
- windows 服务的启动与安装
在使用windows 操作系统时,我们对windows服务再也熟悉不过了,这些服务有的是系统层的,有的是应用层的,大部分都是运行在桌面的后台,可以在进程中看到,有时候在做web项目时,在站点启动时要启 ...
- redis错误总结
1.同步错误.不停重试一直不成功 Full resync from master: e51165e2868c541e28134a287f9bfe36372bae34:80575961684 MASTE ...
- Asp.Net获取IP的方法
服务端: //方法一 HttpContext.Current.Request.UserHostAddress; //方法二 HttpContext.Current.Request.ServerVari ...