openwrt: Makefile 框架分析

原文链接:blog.chinaunix.net/uid-26675482-id-4704952.html

本篇的主要目的是想通过分析Makefile,了解openwrt编译过程。着重关注以下几点:

  1. openwrt目录结构
  2. 主Makefile的解析过程,各子目录的目标生成。
  3. kernel编译过程
  4. firmware的生成过程
  5. 软件包的编译过程

openwrt目录结构

官方源下载速度太度,我从github上clone了openwrt的代码仓库。

git clone https://github.com/openwrt-mirror/openwrt.git


上图是openwrt目录结构,其中第一行是原始目录,第二行是编译过程中生成的目录。各目录的作用是:

  • tools - 编译时需要一些工具, tools里包含了获取和编译这些工具的命令。里面是一些Makefile,有的可能还有patch。每个Makefile里都有一句 $(eval $(call HostBuild)),表示编译这个工具是为了在主机上使用的。
  • toolchain - 包含一些命令去获取kernel headers, C library, bin-utils, compiler, debugger
  • target - 各平台在这个目录里定义了firmware和kernel的编译过程。
  • package - 包含针对各个软件包的Makefile。openwrt定义了一套Makefile模板,各软件参照这个模板定义了自己的信息,如软件包的版本、下载地址、编译方式、安装地址等。
  • include - openwrt的Makefile都存放在这里。
  • scripts - 一些perl脚本,用于软件包管理。
  • dl - 软件包下载后都放到这个目录里
  • build_dir - 软件包都解压到build_dir/里,然后在此编译
  • staging_dir - 最终安装目录。tools, toolchain被安装到这里,rootfs也会放到这里。
  • feeds -
  • bin - 编译完成之后,firmware和各ipk会放到此目录下。

OpenWrt Development Guide

main Makefile

openwrt根目录下的Makefile是执行make命令时的入口。从这里开始分析。

world:

ifndef ($(OPENWRT_BUILD),1) # 第一个逻辑 ... else # 第二个逻辑 ... endif

上面这段是主Makefile的结构,可以得知:

  1. 执行make时,若无任何目标指定,则默认目标是world
  2. 执行make时,无参数指定,则会进入第一个逻辑。如果执行命令make OPENWRT_BUILD=1,则直接进入第二个逻辑。

编译时一般直接使用make V=s -j5这样的命令,不会指定OPENWRT_BUILD变量

第一个逻辑

 override OPENWRT_BUILD=1 export OPENWRT_BUILD

更改了OPENWRT_BUILD变量的值。这里起到的作用是下次执行make时,会进入到第二逻辑中。

toplevel.mk中的 %:: 解释world目标的规则。

prereq:: prepare-tmpinfo .config @+$(MAKE) -r -s tmp/.prereq-build $(PREP_MK) @+$(NO_TRACE_MAKE) -r -s $@ %:: @+$(PREP_MK) $(NO_TRACE_MAKE) -r -s prereq @( \
cp .config tmp/.config; \
./scripts/config/conf --defconfig=tmp/.config -w tmp/.config Config.in > /dev/null 2>&1; \ if ./scripts/kconfig.pl '>' .config tmp/.config | grep -q CONFIG; then \
printf "$(_R)WARNING: your configuration is out of sync. Please run make menuconfig, oldconfig or defconfig!$(_N)\n" >&2; \
fi \
) @+$(ULIMIT_FIX) $(SUBMAKE) -r $@

执行 make V=s 时,上面这段规则简化为:

prereq:: prepare-tmpinfo .config @make -r -s tmp/.prereq-build @make V=ss -r -s prereq %:: @make V=s -r -s prereq @make -w -r world

可见其中最终又执行了prereq和world目标,这两个目标都会进入到第二逻辑中。

第二逻辑

首先就引入了target, package, tools, toolchain这四个关键目录里的Makefile文件

 include target/Makefile include package/Makefile include tools/Makefile include toolchain/Makefile

这些子目录里的Makefile使用include/subdir.mk里定义的两个函数来动态生成规则,这两个函数是subdir和stampfile

stampfile

拿target/Makefile举例:

(eval(call stampfile,$(curdir),target,prereq,.config))

会生成规则:

 target/stamp-prereq:=$(STAGING_DIR)/stamp/.target_prereq $$(target/stamp-prereq): $(TMP_DIR)/.build .config @+$(SCRIPT_DIR)/timestamp.pl -n $$(target/stamp-prereq) target .config || \
make $$(target/flags-prereq) target/prereq @mkdir -p $$$$(dirname $$(target/stamp-prereq)) @touch $$(target/stamp-prereq) $$(if $(call debug,target,v),,.SILENT: $$(target/stamp-prereq)) .PRECIOUS: $$(target/stamp-prereq) # work around a make bug target//clean:=target/stamp-prereq/clean target/stamp-prereq/clean: FORCE @rm -f $$(target/stamp-prereq)

所以可以简单的看作: (eval(call stampfile,(curdir),target,prereq,.config))生成了目标(target/stamp-prereq)

  • 对于target分别生成了:(target/stamp?preq),(target/stamp-copile), $(target/stamp-install)
  • toolchain : $(toolchain/stamp-install)
  • package : (package/stamp?preq),(package/stamp-cleanup), (package/stamp?compile),(package/stamp-install)
  • tools : $(tools/stamp-install)

OpenWrt的主Makefile工作过程

subdir

subdir这个函数写了一大堆东西,看起来很复杂 。

$(call subdir, target) 会遍历下的子目录,执行 make -C 操作。这样就切入子目录中去了。

目录变量

几个重要的目录路径:

    • KERNEL_BUILD_DIR

      build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/linux-3.14.18

    • LINUX_DIR

      build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/linux-3.14.18

    • KDIR

      build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a

    • BIN_DIR

      bin/ramips
      Makefile中包含了rules.mk, target.mk等.mk文件,这些文件中定义了许多变量,有些是路径相关的,有些是软件相关的。这些变量在整个Makefile工程中经常被用到,

    • TARGET_ROOTFS_DIR

      build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2

    • BUILD_DIR

      build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2

    • STAGING_DIR_HOST

      staging_dir/toolchain-mipsel_24kec+dsp_gcc-4.8-linaro_uClibc-0.9.33.2

    • TARGET_DIR

      build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/root-ramips

kernel 编译:

target/linux/ramips/Makefile: $(eval $(call BuildTarget))
target/linux/Makefile : export TARGET_BUILD=1
include/target.mk:

ifeq ($(TARGET_BUILD),1)
include $(INCLUDE_DIR)/kernel-build.mk
BuildTarget?=$(BuildKernel)
endif

BuildKernel是include/kernel-build.mk定义的一个多行变量,其中描述了如何编译内核, 主要关注其中install规则的依赖链:

 $(KERNEL_BUILD_DIR)/symtab.h: FORCE
rm -f $(KERNEL_BUILD_DIR)/symtab.h
touch $(KERNEL_BUILD_DIR)/symtab.h
+$(MAKE) $(KERNEL_MAKEOPTS) vmlinux
... $(LINUX_DIR)/.image: $(STAMP_CONFIGURED) $(if $(CONFIG_STRIP_KERNEL_EXPORTS),$(KERNEL_BUILD_DIR)/symtab.h) FORCE $(Kernel/CompileImage) $(Kernel/CollectDebug)
touch $$@ install: $(LINUX_DIR)/.image +$(MAKE) -C image compile install TARGET_BUILD=
1. 触发make vmlinux命令生成vmlinux: install --> $(LINUX_DIR)/.image --> $(KERNEL_BUILD_DIR)/symtab.h --> `$(MAKE) $(KERNEL_MAKEOPTS) vmlinux` 2. 对vmlinux做objcopy, strip操作: $(LINUX_DIR)/.image --> $(Kernel/CompileImage) --> $(call Kernel/CompileImage/Default) --> $(call Kernel/CompileImage/Default) $(KERNEL_CROSS)objcopy -O binary $(OBJCOPY_STRIP) -S $(LINUX_DIR)/vmlinux $(LINUX_KERNEL)$(1)
--> build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/vmlinux $(KERNEL_CROSS)objcopy $(OBJCOPY_STRIP) -S $(LINUX_DIR)/vmlinux $(KERNEL_BUILD_DIR)/vmlinux$(1).elf
--> build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/vmlinux.elf $(CP) $(LINUX_DIR)/vmlinux $(KERNEL_BUILD_DIR)/vmlinux.debug
--> build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/vmlinux.debug

生成firmware

firmware由kernel和rootfs两个部分组成,要对两个部分先分别处理,然后再合并成一个.bin文件。先看一下这个流程。

"target/linux/ramips/image/Makefile" 文件中的最后一句:$(eval $(call BuildImage)),将BuildImage展开在这里。BuildImage定义在 include/image.mk 文件中,其中定义了数个目标的规则。

define BuildImage

    compile: compile-targets FORCE
**$(call Build/Compile)** install: compile install-targets FORCE ... $(call Image/BuildKernel) ## 处理vmlinux ... $(call Image/mkfs/squashfs) ## 生成squashfs,并与vmlinux合并成一个.bin文件 ... endef

处理vmlinux: Image/BuildKernel

target/linux/ramips/image/Makefile:

define Image/BuildKernel
cp $(KDIR)/vmlinux.elf $(BIN_DIR)/$(VMLINUX).elf
cp $(KDIR)/vmlinux $(BIN_DIR)/$(VMLINUX).bin $(call CompressLzma,$(KDIR)/vmlinux,$(KDIR)/vmlinux.bin.lzma) $(call MkImage,lzma,$(KDIR)/vmlinux.bin.lzma,$(KDIR)/uImage.lzma)
cp $(KDIR)/uImage.lzma $(BIN_DIR)/$(UIMAGE).bin
ifneq ($(CONFIG_TARGET_ROOTFS_INITRAMFS),)
cp $(KDIR)/vmlinux-initramfs.elf $(BIN_DIR)/$(VMLINUX)-initramfs.elf
cp $(KDIR)/vmlinux-initramfs $(BIN_DIR)/$(VMLINUX)-initramfs.bin $(call CompressLzma,$(KDIR)/vmlinux-initramfs,$(KDIR)/vmlinux-initramfs.bin.lzma) $(call MkImage,lzma,$(KDIR)/vmlinux-initramfs.bin.lzma,$(KDIR)/uImage-initramfs.lzma)
cp $(KDIR)/uImage-initramfs.lzma $(BIN_DIR)/$(UIMAGE)-initramfs.bin
endif $(call Image/Build/Initramfs) endef

lzma压缩内核

build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/ 目录中:

lzma e vmlinux -lc1 -lp2 -pb2 vmlinux.bin.lzma

MkImage

build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/ 目录中:

mkimage -A mips -O linux -T  kernel -C lzma -a 0x80000000 -e 0x80000000 -n "MIPS OpenWrt Linux-3.14.18" -d vmlinux.bin.lzma uImage.lzma

copy

VMLINUX:=$(IMG_PREFIX)-vmlinux --> openwrt-ramips-mt7620a-vmlinux UIMAGE:=$(IMG_PREFIX)-uImage --> openwrt-ramips-mt7620a-uImage
cp $(KDIR)/uImage.lzma $(BIN_DIR)/$(UIMAGE).bin

把uImage.lzma复制到bin/ramips/目录下:
cp $(KDIR)/uImage.lzma bin/ramips/openwrt-ramips-mt7620a-uImage

制作squashfs,生成.bin: $(call Image/mkfs/squashfs)

 define Image/mkfs/squashfs @mkdir -p $(TARGET_DIR)/overlay $(STAGING_DIR_HOST)/bin/mksquashfs4 $(TARGET_DIR) $(KDIR)/root.squashfs -nopad 
-noappend -root-owned -comp $(SQUASHFSCOMP) $(SQUASHFSOPT) -processors $(if $(CONFIG_PKG_BUILD_JOBS),$(CONFIG_PKG_BUILD_JOBS),1) $(call Image/Build,squashfs)
endif

mkdir -p $(TARGET_DIR)/overlay

mkdir -p build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/root-ramips/overlay

mksquashfs4

$(STAGING_DIR_HOST)/bin/mksquashfs4 $(TARGET_DIR) $(KDIR)/root.squashfs -nopad -noappend -root-owned -comp $(SQUASHFSCOMP) $(SQUASHFSOPT) -processors 
$(if $(CONFIG_PKG_BUILD_JOBS),$(CONFIG_PKG_BUILD_JOBS),1)

制作squashfs文件系统,生成root.squashfs:

mksquashfs4 root-ramips root.squashfs -nopad -noappend -root-owned -comp gzip -b 256k -p '/dev d 755 0 0' -p '/dev/console c 600 0 0 5 1' -processors 1

$(call Image/Build,squashfs)

在 target/linux/ramips/image/Makefile 中:

define Image/Build $(call Image/Build/$(1))
dd if=$(KDIR)/root.$(1) of=$(BIN_DIR)/$(IMG_PREFIX)-root.$(1) bs=128k conv=sync $(call Image/Build/Profile/$(PROFILE),$(1))
endef
  • dd if=(KDIR)/root.squashfsof=(BIN_DIR)/$(IMG_PREFIX)-root.squashfs bs=128k conv=sync

dd if=build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7620a/root.squashfs of=bin/ramips/openwrt-ramips-mt7620-root.squashfs bs=128k conv=sync

  • (callImage/Build/Profile/(PROFILE),squashfs)

target/linux/ramips/mt7620a/profiles/00-default.mk, 中调用 Profile 函数:$(eval $(call Profile,Default))

include/target.mk 中定义了 Profile 函数, 其中令 PROFILE=Default

define Image/Build/Profile/Default
$(call Image/Build/Profile/MT7620a,$(1)) ... endef

规则依赖序列如下:

$(call Image/Build/Profile/$(PROFILE),squashfs)
--> $(call BuildFirmware/Default8M/squashfs,squashfs,mt7620a,MT7620a) --> $(call BuildFirmware/OF,squashfs,mt7620a,MT7620a,8060928) --> $(call MkImageLzmaDtb,mt7620a,MT7620a) -->
$(call PatchKernelLzmaDtb,mt7620a,MT7620a) --> $(call MkImage,lzma,$(KDIR)/vmlinux-mt7620a.bin.lzma,$(KDIR)/vmlinux-mt7620a.uImage) --> $(call MkImageSysupgrade/squashfs,squashfs,mt7620a,8060928)

其中的主要步骤:

  • 复制: cp (KDIR)/vmlinux(KDIR)/vmlinux-mt7620a
  • 生成dtb文件: (LINUXDIR)/scripts/dtc/dtc?Odtb?o(KDIR)/MT7620a.dtb ../dts/MT7620a.dts
  • 将内核与dtb文件合并:(STAGINGDIRHOST)/bin/patch?dtb(KDIR)/vmlinux-mt7620a $(KDIR)/MT7620a.dtb
  • 使用lzma压缩:(callCompressLzma,(KDIR)/vmlinux-mt7620a,$(KDIR)/vmlinux-mt7620a.bin.lzma)
  • 将lzma压缩后的文件经过mkimage工具处理,即在头部添加uboot可识别的信息。

接下来就是合并生成firmware固件了:

MkImageSysupgrade/squashfs, squashfs, mt7620a,8060928

cat vmlinux-mt7620a.uImage root.squashfs > openwrt-ramips-mt7620-mt7620a-squashfs-sysupgrade.bin
--> 制作squashfs bin文档, 并确认它的大小 < 8060928 才是有效的,否则报错。


总结: 整个流程下来,其实最烦索的还是对内核生成文件vmlinux的操作,经过了objcopy, patch-dtb, lzma, mkimage 等过程生成一个uImage,再与mksquashfs工具制作的文件系统rootfs.squashfs合并。

openwrt: Makefile 框架分析的更多相关文章

  1. openwrt: Makefile 框架分析[转载]

    openwrt目录结构 上图是openwrt目录结构,其中第一行是原始目录,第二行是编译过程中生成的目录.各目录的作用是: tools - 编译时需要一些工具, tools里包含了获取和编译这些工具的 ...

  2. contiki makefile框架分析 < contiki学习之一 >

    在linux下的工程编译,基本都可以使用makefile这个工具来完成.Contiki OS亦如此,下面分析contiki整个Makefile的框架,对makefile的具体内容暂不做分析.本文依赖于 ...

  3. openwrt<转载--openwrt框架分析 >

    这次讲讲openwrt的结构. 1. 代码上来看有几个重要目录package, target, build_root, bin, dl.... ---build_dir/host目录是建立工具链时的临 ...

  4. 【转载】openwrt框架分析

    文章出处:http://blog.csdn.net/kingvenll/article/details/27545221 这次讲讲openwrt的结构. 1. 代码上来看有几个重要目录package, ...

  5. openwrt luci web分析

    openwrt luci web分析 来源 https://www.jianshu.com/p/596485f95cf2 www/cbi-bin/luci #!/usr/bin/lua --cgi的执 ...

  6. cc2530 makefile简略分析 <contiki学习之三>

    前面将contiki的makefile框架都理了下,这篇就以cc2530为收篇吧,也即makefile分析就该到此为止了. contiki/examples/cc2530dk 打开Makefile如下 ...

  7. (七) UVC框架分析

    title: UVC框架分析 date: 2019/4/23 19:50:00 toc: true --- UVC框架分析 源码的位置在drivers\media\video\uvc,查看下Makef ...

  8. Linux USB驱动框架分析 【转】

    转自:http://blog.chinaunix.net/uid-11848011-id-96188.html 初次接触与OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结 ...

  9. linux驱动基础系列--linux spi驱动框架分析

    前言 主要是想对Linux 下spi驱动框架有一个整体的把控,因此会忽略某些细节,同时里面涉及到的一些驱动基础,比如平台驱动.设备模型等也不进行详细说明原理.如果有任何错误地方,请指出,谢谢! spi ...

随机推荐

  1. win7里边使用telnet命令提示telnet不是内部或外部命令

    Win7默认没有安装telnet功能,所以你直接用telnet命令是用不了的: 你可以去“控制面板”-->“程序”(在左下角)--->“打开或关闭Windows功能”,勾上“telnet客 ...

  2. css3 简单动画

    <script> <!-- var x,y,n=0,ny=0,rotINT,rotYINT function rotateDIV() { x=document.getElementB ...

  3. Sudoku

    Sudoku Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15952 Accepted: 7791 Special Judge ...

  4. linux下网络程序遭遇SIGPIPE的解决(转)

    http://blog.chinaunix.net/uid-20135786-id-3409085.html 问题描述: 我的一个服务器程序, 在Windows下运行正常. 但当在Linux(cent ...

  5. Linux 文件操作总结

    http://blog.163.com/he_junwei/blog/static/19793764620152592737741/ ioctl?? lseek?? 文件是linux中的一个重要概念. ...

  6. ceil floor函数

    > a=6.4> b=math.ceil(a)> print(b)7> c=math.floor(a)> print(c)6 ceil向上取整 floor向下取整

  7. easyUI学习网站

    http://www.runoob.com/jeasyui/plugins-form-timespinner.html http://www.jeasyui.net/plugins/178.html ...

  8. 使用js实现移动设备访问跳转到指定目录

    最近最项目的时候总会同时做pc站点跟手机站点,当手机访问的时候默认是看到pc站点的,需要在url上加上/mobile才能正常访问,这段代码是我同事分享给我的,还是蛮实用的. CODE function ...

  9. 动手动脑final

    1.回答问题 1. 下边的程序运行结果是什么? 2.   你如何解释会得到这样的输出? 3.   计算机是不会出错的,之所以得到这样的运行结果也是有原因的,那么从这些运行结果中,你能总结出Java的哪 ...

  10. js获取鼠标位置

    1.PageX/PageX:鼠标在页面上的位置,从页面左上角开始,即是以页面为参考点,不随滑动条移动而变化2.clientX/clientY:鼠标在页面上可视区域的位置,从浏览器可视区域左上角开始,即 ...