最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。

首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的采样,θ为模型参数,f为我们所使用的模型。那么最大似然估计可以表示为:

现在,假设θ的先验分布为g。通过贝叶斯理论,对于θ的后验分布如下式所示:

最后验分布的目标为:

    注:最大后验估计可以看做贝叶斯估计的一种特定形式。

  举例来说:

  假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是

    樱桃 100%

    樱桃 75% + 柠檬 25%

    樱桃 50% + 柠檬 50%

    樱桃 25% + 柠檬 75%

    柠檬 100%

  如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个?

我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作

  

  由于p的取值是一个离散值,即上面描述中的0,25%,50%,75%,1。我们只需要评估一下这五个值哪个值使得似然函数最大即可,得到为袋子5。这里便是最大似然估计的结果。

上述最大似然估计有一个问题,就是没有考虑到模型本身的概率分布,下面我们扩展这个饼干的问题。

假设拿到袋子1或5的机率都是0.1,拿到2或4的机率都是0.2,拿到3的机率是0.4,那同样上述问题的答案呢?这个时候就变MAP了。我们根据公式

  

写出我们的MAP函数。

  

根据题意的描述可知,p的取值分别为0,25%,50%,75%,1,g的取值分别为0.1,0.2,0.4,0.2,0.1.分别计算出MAP函数的结果为:0,0.0125,0.125,0.28125,0.1.由上可知,通过MAP估计可得结果是从第四个袋子中取得的最高。

  上述都是离散的变量,那么连续的变量呢?假设为独立同分布的,μ有一个先验的概率分布为。那么我们想根据来找到μ的最大后验概率。根据前面的描述,写出MAP函数为:

  

  此时我们在两边取对数可知。所求上式的最大值可以等同于求

  

  的最小值。求导可得所求的μ为

  

  以上便是对于连续变量的MAP求解的过程。

在MAP中我们应注意的是:

MAP与MLE最大区别是MAP中加入了模型参数本身的概率分布,或者说。MLE中认为模型参数本身的概率的是均匀的,即该概率为一个固定值。

因此如果模型的均值随着样本个数的改变而发生一定变化,并且服从高斯分布则可以考虑添加后验概率估计。

参考:

http://www.cnblogs.com/liliu/archive/2010/11/24/1886110.html

http://www.cnblogs.com/washa/p/3222109.html

最大后验估计(MAP)的更多相关文章

  1. 贝叶斯公式与最大后验估计(MAP)

    1, 频率派思想 频率派思想认为概率乃事情发生的频率,概率是一固定常量,是固定不变的 2, 最大似然估计 假设有100个水果由苹果和梨混在一起,具体分配比例未知,于是你去随机抽取10次,抽到苹果标记为 ...

  2. 【SR】MAP

    MAP:最大后验概率(Maximum a posteriori) 估计方法根据经验数据获得对难以观察的量的点估计.它与最大似然估计中的 Fisher方法有密切关系, 但是它使用了一个增大的优化目标,这 ...

  3. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

  4. PRML读书后记(一): 拟合学习

    高斯分布·拟合 1.1 优美的高斯分布 中心极限定理[P79]证明均匀分布和二项分布在数据量 $N\rightarrow \infty$ 时,都会演化近似为高斯分布. 作为最晚发现的概率分布,可以假设 ...

  5. over-fitting、under-fitting 与 regularization

    机器学习中一个重要的话题便是模型的泛化能力,泛化能力强的模型才是好模型,对于训练好的模型,若在训练集表现差,不必说在测试集表现同样会很差,这可能是欠拟合导致:若模型在训练集表现非常好,却在测试集上差强 ...

  6. EM阅读资料

    1,从最大似然到EM算法浅解 2,(EM算法)The EM Algorithm 3,数据挖掘十大算法----EM算法(最大期望算法) (番外)最大后验估计(MAP)

  7. Chapter 7:Statistical-Model-Based Methods

    作者:桂. 时间:2017-05-25  10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...

  8. Variational Bayes

    一.前言 变分贝叶斯方法最早由Matthew J.Beal在他的博士论文<Variational Algorithms for Approximate Bayesian Inference> ...

  9. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes+prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

随机推荐

  1. undefined reference to `pthread_create'问题解决

    在编译pthread有关的程序时,出现undefined reference to `pthread_create'这样的错误. 问题原因: pthread 库不是 Linux 系统默认的库,连接时需 ...

  2. 空间session失效的解决方法

    今天访问自己的网站的时候(by thinkphp),突然发现身份验证失效了,Session无法跨页,而且登陆的时候总是提示验证码错误(验证码也是通过Session传递的),才意识到可能是Session ...

  3. C#利用Attribute实现简易AOP介绍 (转载)

    地址:http://dotnet.9sssd.com/csbase/art/638 http://wayfarer.blog.51cto.com/1300239/279913 http://devel ...

  4. silverlight水印

    1.自定义类 using System; using System.Net; using System.Windows; using System.Windows.Controls; using Sy ...

  5. js获取和设置DOM样式函数cssStyle(类似于jquery的$(elem).css())

    如题,相信这个函数百度一搜一大推,但令人匪夷所思的是这些函数都写的“奇形怪状的”,例如http://www.cnblogs.com/windows7/archive/2010/03/30/170064 ...

  6. Python在金融,数据分析,和人工智能中的应用

    Python在金融,数据分析,和人工智能中的应用   Python最近取得这样的成功,而且未来似乎还会继续下去,这有许多原因.其中包括它的语法.Python开发人员可用的科学生态系统和数据分析库.易于 ...

  7. C++列出完数

    题目内容:自然数中,完数寥若晨星,请在从1到某个整数范围中打印出所有的完数来.所谓“完数”是指一个数恰好等于它的所有不同因子之和.例如,6是完数,因为6=1+2+3.而24不是完数,因为24≠1+2+ ...

  8. Delphi For Android 开发笔记-附:如何Delphi中同时实现Windows、Android版的GetModuleFileName函数

    在Windows中开发DLL时,经常会需要获取当前DLL所在目录以便读取同目录下的其他文件,而目前Delphi在开发android时,其实没多大必要获取,因为整个工程只有一个so文件,而这个so文件也 ...

  9. Android触摸屏配置调试

    前几天搞乐蛙时,进入后是鼠标模式,好坑爹的模式有木有~~ 但是大蛋给出了解决方法,我不怕不怕啦~让我们向大牛致敬!!! 首先输入Command查看你的input配置~ adb shell dumpsy ...

  10. angularjs2 学习笔记(五) http服务

    angular2的http服务是用于从后台程序获取或更新数据的一种机制,通常情况我们需要将与后台交换数据的模块做出angular服务,利用http获取更新后台数据,angular使用http的get或 ...