我也有够懒的,今天才跑来写总结,自觉面壁中…

上一篇是Practice Round,今天是Round A,五道题。

每次做完都想说,其实题不难。。但在做的过程中总是会各种卡,只有自己一行一行实现了,才算真正做过一道题,忌眼高手低啊~没做过的先自己做做吧。

Problem A. Read Phone Number

Do you know how to read the phone numbers in English? Now let me tell you.

For example, In China, the phone numbers are 11 digits, like: 15012233444. Someone divides the numbers into 3-4-4 format, i.e. 150 1223 3444. While someone divides the numbers into 3-3-5 format, i.e. 150 122 33444. Different formats lead to different ways to read these numbers:

150 1223 3444 reads one five zero one double two three three triple four.

150 122 33444 reads one five zero one double two double three triple four.

Here comes the problem:

Given a list of phone numbers and the dividing formats, output the right ways to read these numbers.

Rules:

Single numbers just read them separately.

2 successive numbers use double.

3 successive numbers use triple.

4 successive numbers use quadruple.

5 successive numbers use quintuple.

6 successive numbers use sextuple.

7 successive numbers use septuple.

8 successive numbers use octuple.

9 successive numbers use nonuple.

10 successive numbers use decuple.

More than 10 successive numbers read them all separately.

Input

The first line of the input gives the number of test cases, TT lines|test cases follow. Each line contains a phone number N and the dividing format F, one or more positive integers separated by dashes (-), without leading zeros and whose sum always equals the number of digits in the phone number.

Output

For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1) and y is the reading sentence in English whose words are separated by a space.

Limits

1 ≤ T ≤ 100.

Small dataset

1 ≤ length of N ≤ 10.

Large dataset

1 ≤ length of N ≤ 100.

Sample

Input 
 
 
3
15012233444 3-4-4
15012233444 3-3-5
12223 2-3

Output 
 
Case #1: one five zero one double two three three triple four
Case #2: one five zero one double two double three triple four
Case #3: one two double two three
 #include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace std; void ReadPhoneNumber()
{
string times[] = {"double", "triple", "quadruple", "quintuple", "sextuple", "septuple", "octuple", "nonuple", "decuple"};
string number[] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"};
int T;
cin >> T;
for(int i = ; i <= T; ++i)
{
cout << "Case #" << i << ": ";
string N, F;
cin >> N >> F;
int FInd1 = ;
int FInd2 = ;
int NInd1 = ;
int NInd2 = ;
int index = ;
while(FInd2 < F.length())
{
int divNum = ;
while(FInd2 < F.length() && F[FInd2] != '-')
FInd2++;
while(FInd1 < FInd2)
{
divNum = * divNum + F[FInd1] - '';
FInd1++;
}
index += divNum;
FInd2++;
FInd1 = FInd2;
int repNum = ;
int j = ;
while(j < divNum)
{
while(NInd2 < index && N[NInd2] == N[NInd1])
{
repNum++;
NInd2++;
}
if(NInd2 == N.length())
{
if(repNum > && repNum < )
{
cout << times[repNum-] << ' ';
cout << number[N[NInd1]-''];
}
else
{
while(NInd1 < NInd2 - )
{
cout << number[N[NInd1]-''] << ' ';
NInd1++;
}
cout << number[N[NInd1]-''];
}
}
else{
if(repNum > && repNum < )
{
cout << times[repNum-] << ' ';
cout << number[N[NInd1]-''] << ' ';
}
else
{
while(NInd1 < NInd2)
{
cout << number[N[NInd1]-''] << ' ';
NInd1++;
}
}
}
j += repNum;
repNum = ;
NInd1 = NInd2;
NInd2++;
}
}
if(i < T)
cout << endl;
}
} int main()
{
freopen("A-large-practice.in", "r", stdin);
freopen("A-large-practice.out", "w", stdout);
ReadPhoneNumber();
return ;
}

Problem B. Rational Number Tree

Consider an infinite complete binary tree where the root node is 1/1 and left and right childs of node p/q are p/(p+q) and (p+q)/q, respectively. This tree looks like:
         1/1
______|______
| |
1/2 2/1
___|___ ___|___
| | | |
1/3 3/2 2/3 3/1
...

It is known that every positive rational number appears exactly once in this tree. A level-order traversal of the tree results in the following array:

1/1, 1/2, 2/1, 1/3, 3/2, 2/3, 3/1, ...

Please solve the following two questions:

  1. Find the n-th element of the array, where n starts from 1. For example, for the input 2, the correct output is 1/2.
  2. Given p/q, find its position in the array. As an example, the input 1/2 results in the output 2.

Input

The first line of the input gives the number of test cases, TT test cases follow. Each test case consists of one line. The line contains a problem id (1 or 2) and one or two additional integers:

  1. If the problem id is 1, then only one integer n is given, and you are expected to find the n-th element of the array.
  2. If the problem id is 2, then two integers p and q are given, and you are expected to find the position of p/q in the array.

Output

For each test case:

  1. If the problem id is 1, then output one line containing "Case #x: p q", where x is the case number (starting from 1), and pq are numerator and denominator of the asked array element, respectively.
  2. If the problem id is 2, then output one line containing "Case #x: n", where x is the case number (starting from 1), and n is the position of the given number.

Limits

1 ≤ T ≤ 100; p and q are relatively prime.

Small dataset

1 ≤ npq ≤ 216-1; p/q is an element in a tree with level number ≤ 16.

Large dataset

1 ≤ npq ≤ 264-1; p/q is an element in a tree with level number ≤ 64.

Sample

Input 
 
Output 
 
4
1 2
2 1 2
1 5
2 3 2
Case #1: 1 2
Case #2: 2
Case #3: 3 2
Case #4: 5
 #include <iostream>
#include <fstream>
using namespace std; void RationalNumberTreeId1(unsigned long long n, unsigned long long &p, unsigned long long &q)
{
if (n == )
{
p = ;
q = ;
return;
}
RationalNumberTreeId1(n/, p, q);
if((n & ) == )
{
p = p+q;
return;
}
else
{
q = p+q;
return;
}
} void RationalNumberTreeId2(unsigned long long p, unsigned long long q, unsigned long long &n)
{
if(p == && q == )
{
n = ;
return;
}
if(p > q)
{
RationalNumberTreeId2(p - q, q, n);
n = * n + ;
}
else
{
RationalNumberTreeId2(p, q - p, n);
n = * n;
}
} void RationalNumberTree()
{
int T;
cin >> T;
for(int i = ; i <= T; ++i)
{
cout << "Case #" << i << ": ";
int id;
cin >> id;
switch(id)
{
case():
unsigned long long n1;
cin >> n1;
unsigned long long p1,q1;
RationalNumberTreeId1(n1, p1, q1);
cout << p1 << " " << q1;
break;
case():
unsigned long long p2, q2;
cin >> p2 >> q2;
unsigned long long n2 = ;
RationalNumberTreeId2(p2, q2, n2);
cout << n2;
break;
}
if(i < T)
cout << endl;
}
} int main()
{
freopen("B-large-practice.in","r",stdin);
freopen("B-large-practice.out","w",stdout);
RationalNumberTree();
return ;
}

Problem C. Sorting

Alex and Bob are brothers and they both enjoy reading very much. They have widely different tastes on books so they keep their own books separately. However, their father thinks it is good to promote exchanges if they can put their books together. Thus he has bought an one-row bookshelf for them today and put all his sons' books on it in random order. He labeled each position of the bookshelf the owner of the corresponding book ('Alex' or 'Bob').

Unfortunately, Alex and Bob went outside and didn't know what their father did. When they were back, they came to realize the problem: they usually arranged their books in their own orders, but the books seem to be in a great mess on the bookshelf now. They have to sort them right now!!

Each book has its own worth, which is represented by an integer. Books with odd values of worth belong to Alex and the books with even values of worth belong to Bob. Alex has a habit of sorting his books from the left to the right in an increasing order of worths, while Bob prefers to sort his books from the left to the right in a decreasing order of worths.

At the same time, they do not want to change the positions of the labels, so that after they have finished sorting the books according their rules, each book's owner's name should match with the label in its position.

Here comes the problem. A sequence of N values s0s1, ..., sN-1 is given, which indicates the worths of the books from the left to the right on the bookshelf currently. Please help the brothers to find out the sequence of worths after sorting such that it satisfies the above description.

Input

The first line of input contains a single integer T, the number of test cases. Each test case starts with a line containing an integer N, the number of books on the bookshelf. The next line contains N integers separated by spaces, representing s0s1, ..., sN-1, which are the worths of the books.

Output

For each test case, output one line containing "Case #X: ", followed by t0t1, ..., tN-1 in order, and separated by spaces. X is the test case number (starting from 1) and t0t1, ...,tN-1 forms the resulting sequence of worths of the books from the left to the right.

Limits

1 ≤ T ≤ 30.

Small dataset

1 ≤ N ≤ 100
-100 ≤ si ≤ 100

Large dataset

1 ≤ N ≤ 1000
-1000 ≤ si ≤ 1000

Sample

Input 
 
Output 
 
2
5
5 2 4 3 1
7
-5 -12 87 2 88 20 11
Case #1: 1 4 2 3 5
Case #2: -5 88 11 20 2 -12 87
 #include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std; bool myfunction (int i,int j)
{
return (i > j);
} void Sorting()
{
int T;
cin >> T;
for(int i = ; i <= T; ++i)
{
cout << "Case #" << i << ": ";
int pos1[], pos2[];
memset(pos1, -, );
memset(pos1, -, );
int ord1[], ord2[];
int num1 = ;
int num2 = ;
int book[];
int N;
cin >> N;
for(int j = ; j < N; ++j)
{
cin >> book[j];
if(book[j] & == )
{
pos1[num1] = j;
ord1[num1] = book[j];
num1++;
}
else
{
pos2[num2] = j;
ord2[num2] = book[j];
num2++;
}
}
vector<int> myvector1 (ord1, ord1 + num1);
sort (myvector1.begin(), myvector1.begin() + num1);
vector<int> myvector2 (ord2, ord2 + num2);
sort (myvector2.begin(), myvector2.begin() + num2, myfunction);
int index = ;
for (vector<int>::iterator it=myvector1.begin(); it!=myvector1.end(); ++it)
{
book[pos1[index++]] = *it;
}
index = ;
for (vector<int>::iterator it=myvector2.begin(); it!=myvector2.end(); ++it)
{
book[pos2[index++]] = *it;
}
for(int j = ; j < N-; ++j)
{
cout << book[j] << ' ';
}
cout << book[N-];
if(i < T)
cout << endl;
}
} int main()
{
freopen("C-large-practice.in", "r", stdin);
freopen("C-large-practice.out", "w", stdout);
Sorting();
return ;
}

Problem D. Cross the maze

Edison, a robot, does not have a right hand or eyes. As a brave robot, he always puts his left hand on the wall no matter he walks or turns around. Because he thinks it is too dangerous, Edison does not walk backward.

Assume that Edison has found himself in a square-shaped maze of NxN square cells which is surrounded by walls from the outside. In the maze, some of the cells are also walls. Edison can only move between two empty cells in four directions, north, south, west and east. In order to get out of the maze, he drafts a plan. He uses his left hand to lean on the wall and goes by following the wall.

Here is the question, is Edison able to get out of the maze in at most 10,000 steps? If he can make it, output the path. By getting out of the maze, he only needs to be in the exit cell. If the starting cell is the same as the exit, Edison won't need to move and can directly get out of the maze.

Input

The first line of the input gives the number of test cases, TT test cases follow. Each test case starts with an integer NN is the size of the maze. The following N lines, each line contains N characters which may be '.' or '#'. '.' is an empty cell, '#' is a wall. Followed by a line which contains four integers: sxsyexey. (sxsy) means that Edison is standing on row sx and column sy as his starting cell, (exey) is the exit of the maze. (sxsy) is guaranteed to be at one of the 4 corners of the maze, and Edison can only touch the wall on 4 adjacent cells(not 8) initially. (exey) can be anywhere in the maze. Note that the top-left corner is at position (1,1).

Output

For each test case, output a line containing "Case #x: y", where x is the case number (starting from 1) and y is "Edison ran out of energy." (without the quotes) if Edison can't reach the exit of the maze in at most 10,000 steps, otherwise y should be the number of steps followed by another line which contains y characters to describe the path (each character should be E for east, S for south, W for west or N for north). There is no character to represent the turning around. We don't care about the turning around steps, please only output the path of how Edison will cross the maze.

Limits

1 ≤ T ≤ 30.
1 ≤ sxsyexey ≤ N.
The starting cell and the exit of the maze will always be an empty cell. And the starting cell and the exit of the maze won't be the same.

Small dataset

2 ≤ N ≤ 10.

Large dataset

2 ≤ N ≤ 100.

Sample

Input 
 
Output 
 
3
2
.#
#.
1 1 2 2
5
.##.#
.....
...#.
.###.
...#.
1 1 5 3
3
...
.#.
...
1 1 3 3
Case #1: Edison ran out of energy.
Case #2: 22
SEEENSESSSNNNWWSWWSSEE
Case #3: 4
EESS

Note: 
In the 2nd test case after moving 1 cell down from his starting cell, Edison will still be able to lean on the wall at the cell (1,2) by his left hand. 
In the third test case, due to Edison can't touch the wall at cell (2,2) initially, so he has to go east in his first step.

 #include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace std; bool Adjacent(int x1, int y1, int x2, int y2)
{
if(x1 - x2 > || x2 - x1 > || y1 - y2 > || y2 - y1 > )
return false;
return true;
} void CrossTheMaze()
{
int T;
cin >> T;
for(int i = ; i <= T; ++i)
{
cout << "Case #" << i << ": ";
int N;
cin >> N;
char **maze;
maze = new char*[N];
for(int j = ; j < N; ++j)
maze[j] = new char[N];
for(int j = ; j < N; ++j)
{
for(int k = ; k < N; ++k)
cin >> maze[j][k];
}
int sx, sy, ex, ey;
cin >> sx >> sy >> ex >> ey;
sx -= ;
sy -= ;
ex -= ;
ey -= ;
int cx = sx, cy = sy;
vector<char> path;
char flag;
int wx, wy;
if(sx == )
{
if(sy == )
{
wx = -;
wy = ;
flag = 'e';
}
else
{
wx = ;
wy = N;
flag = 's';
}
}
else
{
if(sy == )
{
wx = N-;
wy = -;
flag = 'n';
}
else
{
wx = N;
wy = N-;
flag = 'w';
}
}
int turn = ;
for(int j = ; j <= && (cx != ex || cy != ey);)
{
bool n = (cx > && maze[cx-][cy] == '.') && (((cy == || maze[cx][cy-] == '#') && Adjacent(cx,cy-,wx,wy)) || (cy > && maze[cx-][cy-] == '#' && flag == 'e'));
bool s = (cx < N- && maze[cx+][cy] == '.') && (((cy == N- || maze[cx][cy+] == '#') && Adjacent(cx,cy+,wx,wy)) || (cy < N- && maze[cx+][cy+] == '#' && flag == 'w'));
bool w = (cy > && maze[cx][cy-] == '.') && (((cx == N- || maze[cx+][cy] == '#') && Adjacent(cx+,cy,wx,wy)) || (cx < N- && maze[cx+][cy-] == '#' && flag == 'n'));
bool e = (cy < N- && maze[cx][cy+] == '.') && (((cx == || maze[cx-][cy] == '#') && Adjacent(cx-,cy,wx,wy)) || (cx > && maze[cx-][cy+] == '#' && flag == 's'));
if(n||s||w||e)
{
if(n && flag != 's')
{
turn = ;
++j;
cx -= ;
path.push_back('N');
flag = 'n';
if(cy == || maze[cx][cy-] == '#')
{
wx = cx;
wy = cy-;
}
else
{
wx = cx+;
wy = cy-;
}
}
else if(s && flag != 'n')
{
turn = ;
++j;
cx += ;
path.push_back('S');
flag = 's';
if(cy == N- || maze[cx][cy+] == '#')
{
wx = cx;
wy = cy+;
}
else
{
wx = cx-;
wy = cy+;
}
}
else if(w && flag != 'e')
{
turn = ;
++j;
cy -= ;
path.push_back('W');
flag = 'w';
if(cx == N- || maze[cx+][cy] == '#')
{
wx = cx+;
wy = cy;
}
else
{
wx = cx+;
wy = cy+;
}
}
else if(e && flag != 'w')
{
turn = ;
++j;
cy += ;
path.push_back('E');
flag = 'e';
if(cx == || maze[cx-][cy] == '#')
{
wx = cx-;
wy = cy;
}
else
{
wx = cx-;
wy = cy-;
}
}
}
else
{
if(flag == 'n' && Adjacent(cx-,cy,wx,wy))
{
flag = 'e';
wx = cx-;
wy = cy;
++turn;
}
else if(flag == 's' && Adjacent(cx+,cy,wx,wy))
{
flag = 'w';
wx = cx+;
wy = cy;
++turn;
}
else if(flag == 'w' && Adjacent(cx,cy-,wx,wy))
{
flag = 'n';
wx = cx;
wy = cy-;
++turn;
}
else if(flag == 'e' && Adjacent(cx,cy+,wx,wy))
{
flag = 's';
wx = cx;
wy = cy+;
++turn;
}
else
break;
if(turn == )
break;
}
}
if(cx == ex && cy == ey)
{
cout << path.size() << endl;
for(vector<char>::iterator it = path.begin(); it != path.end(); ++it)
cout << *it;
}
else
cout << "Edison ran out of energy.";
if(i < T)
cout << endl;
for(int j = ; j < N; ++j)
delete [] maze[j];
delete [] maze;
}
} int main()
{
freopen("D-large-practice.in","r",stdin);
freopen("D-large-practice.out","w",stdout);
CrossTheMaze();
return ;
}

Problem E. Spaceship Defence

The enemy has invaded your spaceship, and only superior tactics will allow you to defend it! To travel around your spaceship, your soldiers will use two devices: teleporters andturbolifts.

Teleporters allow your soldiers to move instantly between rooms. Every room contains a teleporter, and rooms are color-coded: if a soldier is in a room with some color, she can use the teleporter in that room to immediately move to any other room with the same color.

Turbolifts allow your soldiers to move between rooms more slowly. A turbolift is like an elevator that moves in many directions. Each turbolift moves from one room to one other room, and it takes a certain amount of time to travel. Notes about turbolifts:

  • Turbolifts are not two-way: if a turbolift moves soldiers from room a to room b, the same turbolift cannot move soldiers from room b to room a, although there might be another turbolift that does that.
  • More than one soldier can use the same turbolift, and they do not interfere with each other in any way.

You will be given the locations and destinations of several soldiers. For each soldier, output the minimum amount of time it could take that soldier to travel from his location to his destination.

Input

The first line of the input gives the number of test cases, TT test cases follow.

For every test case:

The first line of every test case contains an integer N, which is the number of rooms in your spaceship. The rooms are numbered from 1 to N. The following N lines each contain a string telling the color of the rooms, from room 1 to room N. The strings only contain characters a-z (the lower-case English letters) and 0-9 (the number 0 to 9), and the length of each string will be less than or equal to 2.

The next line in the test case is an integer M, which indicates the number of turbolifts in your spaceship. The following M lines each contain 3 space-separated integers aibiti, telling us that there is a turbolift that can transport soldiers from room ai to room bi in tiseconds.

The next line in the test case contains an integer S, which is the number of soldiers at your command. The following S lines each contain two integers: the location and destination of one soldier, pj and qj.

Output

For each test case, output one line containing only the string "Case #x:", where x is the number of the test case (starting from 1). On the next S lines, output a single integer: on line j, the smallest number of seconds it could take for a soldier to travel from pj to qj. If there is no path from pj to qj, the integer you output should be -1.

Limits

1 ≤ S ≤ 100.
1 ≤ ai, bi ≤ N.
0 ≤ ti ≤ 1000.
1 ≤ pj, qj ≤ N.

Small dataset

1 ≤ T ≤ 10.
1 ≤ N ≤ 1000.
0 ≤ M ≤ 3000.

Large dataset

T = 1.
1 ≤ N ≤ 80000.
0 ≤ M ≤ 3000.

Sample

Input 
 
Output 
 
3
3
gl
t3
t3
3
1 2 217
3 2 567
1 1 21
2
2 1
2 3
4
ca
bl
bl
8z
0
3
1 2
2 3
1 1
8
re
b7
ye
gr
0l
0l
ye
b7
7
4 1 19
2 4 21
2 5 317
4 5 34
4 7 3
4 8 265
8 6 71
3
4 3
2 6
1 4
Case #1:
-1
0
Case #2:
-1
0
0
Case #3:
3
55
-1
 #include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <map>
using namespace std; int shortest[][]; void SpaceshipDefence()
{
int T;
cin >> T;
for(int i = ; i <= T; ++i)
{
cout << "Case #" << i << ":" << endl;
long N;
cin >> N;
int *roomColor;
roomColor = new int[N];
for(int j = ; j < ; ++j)
{
for(int k = ; k < ; ++k)
shortest[j][k] = 0x7FFF;
shortest[j][j] = ;
}
string color;
map<string, int> colorMap;
for(long j = ; j < N; ++j)
{
cin >> color;
if(!colorMap.count(color))
colorMap.insert(pair<string,int>(color, colorMap.size()));
roomColor[j] = colorMap[color];
}
int M;
cin >> M;
unsigned long a, b, t;
for(int j = ; j <= M; ++j)
{
cin >> a >> b >> t;
a -= ;
b -= ;
if(shortest[roomColor[a]][roomColor[b]] > t)
shortest[roomColor[a]][roomColor[b]] = t;
}
for(long u = ; u < colorMap.size(); ++u)
{
for(long v = ; v < colorMap.size(); ++v)
{
for(long w = ; w < colorMap.size(); ++w)
{
if(shortest[v][u] + shortest[u][w] < shortest[v][w])
shortest[v][w] = shortest[v][u] + shortest[u][w];
}
}
}
int S;
cin >> S;
long p, q;
for(int j = ; j <= S; ++j)
{
cin >> p >> q;
p -= ;
q -= ;
if(shortest[roomColor[p]][roomColor[q]] == 0x7FFF)
cout << - << endl;
else
cout << shortest[roomColor[p]][roomColor[q]] << endl;
}
delete [] roomColor;
}
} int main()
{
freopen("E-large-practice.in","r",stdin);
freopen("E-large-practice.out","w",stdout);
SpaceshipDefence();
return ;
}

这个里面一个刚开始没想到的问题是,既然同color间传送耗时为0,那么就不用计算所有room之间的最短距离,只需计算所有color间的最短距离即可,这样求最短路的矩阵大小就不用N×N了(不然large dataset,N=80000就hold不住了),而color最多是36*36种,也就一千多种。另外,这么大的矩阵貌似就不能在函数间传递或者在调用的函数中申请了,用全局变量就可以了。

【面试题】Round A China New Grad Test 2014总结的更多相关文章

  1. Practice Round China New Grad Test 2014 报告

    今天有Google of Greater China Test for New Grads of 2014的练习赛,主要是为了过几天的校园招聘测试做练习用的,帮助熟悉平台,题目嘛,个人觉得除了A题外, ...

  2. 前端试题本(Javascript篇)

    JS1. 下面这个JS程序的输出是什么:JS2.下面的JS程序输出是什么:JS3.页面有一个按钮button id为 button1,通过原生的js如何禁用?JS4.页面有一个按钮button id为 ...

  3. HDOJ 5147 Sequence II 树阵

    树阵: 每个号码的前面维修比其数数少,和大量的这后一种数比他的数字 再枚举每一个位置组合一下 Sequence II Time Limit: 5000/2500 MS (Java/Others)    ...

  4. HDU 4857 topological_sort

    逃生 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  5. 小程序-demo:天气预报

    ylbtech-小程序-demo:天气预报 1.返回顶部 1.app.js //app.js App({ //系统事件 onLaunch: function () {//小程序初始化事件 var th ...

  6. 最好的PHP框架有哪些

    最好的PHP框架有哪些 首推 Laravel ,其次是 Yii,Laravel 的设计思想以及在工程实践上的支持,超过 ThinkPHP 好几个世代.如果说原生的 PHP 是火枪, ThinkPHP ...

  7. 纯文本中识别URI地址并转换成HTML

    问题 有一段纯文本text, 欲将其插入DOM节点div中. text中可能有超链接, 邮件地址等. 假设有, 识别之. 分析 假设仅仅是纯文本, 插入div中, 仅仅要将div.innerText设 ...

  8. Facebook Hacker Cup 2014 Qualification Round 竞赛试题 Square Detector 解题报告

    Facebook Hacker Cup 2014 Qualification Round比赛Square Detector题的解题报告.单击这里打开题目链接(国内访问需要那个,你懂的). 原题如下: ...

  9. 【Java面试题】59 Math.round(11.5)等於多少? Math.round(-11.5)等於多少?

    Math类中提供了三个与取整有关的方法:ceil.floor.round,这些方法的作用与它们的英文名称的含义相对应,例如,ceil的英文意义是天花板,该方法就表示向上取整,Math.ceil(11. ...

随机推荐

  1. 1.python的第一步

    学习python也有一段时间了,自认为基本算是入门了,想要写一些博客进行知识的汇总的时候.却发现不知道该从何说起了,因为python这门语言在语法上其实并不难,关键在于如何建立程序员的思维方式,而对于 ...

  2. 5.html5中的路径表示

    路径在html中的作用主要是进行外部资源的引入,如css文件,js文件,媒体文件等. 而路径本身有分为相对路径和绝对路径.所谓相对路径,就是相对于链接页面而言的另一个页面的路径.而绝对路径,就是直接从 ...

  3. MTK机子修复分区信息

    这是前一个星期的事了,最近一直懒得写博客~ 此事是由于我误刷了内核,然后导致分区信息出错... 内置存储挂载不上,也找不到内置存储的分区! 如果不是star的帮助.估计俺的爪机就要返厂了!! 接下来说 ...

  4. CSS3中新出现的技术

    CSS3中新出现的技术 CSS媒体查询 媒体查询 包含了一个媒体类型和至少一个使用如宽度.高度和颜色等媒体属性来限制样式表范围的表达式.CSS3加入的媒体查询使得无需修改内容便可以使样式应用于某些特定 ...

  5. window7部署solr 4.7

    环境:win7 + tomcat 7.0.50 + solr 4.7 备注:C:\solr-4.7.0为solr.zip解压后的目录 C:\apache-tomcat-7.0.50为tomcat目录 ...

  6. Go channel同步

    我们可以使用Channel来同步不同goroutines的执行.看下面的代码: package main import "fmt" import "time" ...

  7. openssl AES加密以及padding

    好习惯,先上代码再说事 加密 void AesEncrypt(unsigned char* pchIn, int nInLen, unsigned char *ciphertext, int & ...

  8. iOS-打包成ipa

    第一步:模拟器选择栏,选择"Generic iOS Device ".早期版本需要断开手机连接,才可以找到. 第二步:选择"Product"菜单下的" ...

  9. having count group by

    select count(*) from (select field2,count(field2) from bsgj.table1  group by field,items_id having(c ...

  10. Qt的QTabelWidget

    QTableWidget的用法总结  http://blog.csdn.net/zb872676223/article/details/39959061 [Qt]在QTableWidget中添加QCh ...