(Carath\'eodory 不等式) 利用 Scharwz 引理及线性变换, 证明: 若函数 $f(z)$ 在圆 $|z|<R$ 内全纯, 在 $|z|\leq R$ 上连续, $M(r)$ 及 $A(r)$ 分别为 $|f(z)|$ 及 $\Re f(z)$ 在圆周 $|z|=r$ 上的最大值, 则当 $0<r<R$ 时, 有 $ M(r)\leq \frac{2r}{R-r}A(R)+\frac{R+r}{R-r}|f(0)|.$

证明: (1) 当 $f(0)=0$ 时, 记 $A=A(R)$, 则由 $\Re f(z)$ 调和及最大模原理, $A\geq f(0)=0$. 所以 $f:D(0,R)\to \sed{w;\ \Re w\leq A}$. 记 $$\bex \psi(\xi)=R\xi,\quad \phi(w)=\frac{w}{w-2A}. \eex$$ 则 $\phi\circ f\circ \psi:D(0,1)\to D(0,1)$ 以 $0$ 为不动点. 由 Schwarz 引理, $$\beex \bea |\phi\circ f\circ \psi(\xi)|&\leq |\xi|,\quad \xi\in D(0,1),\\ |\phi(f(R\xi)|&\leq |\xi|,\quad \xi\in D(0,1),\\ \frac{|f(z)|}{|f(z)-2A}=|\phi(f(z))|&\leq\frac{|z|}{R},\quad z\in D(0,R),\\ |f(z)|&\leq \frac{2|z|A}{R-|z|},\quad z\in D(0,R),\\ M(r)&\leq \frac{2r}{R-r}A. \eea \eeex$$ (2) 当 $f(0)\neq 0$ 时, 考虑 $g(z)=f(z)-f(0)$, 则由 (1) 知 $$\beex \bea \max_{|z|=r}|g(z)|&\leq \frac{2r}{R-r}\max_{|z|=R}\Re g(z),\\ |f(z)|-|f(0)|&\leq \frac{2r}{R-r}[A(R)+|f(0)|],\quad|z|=r,\\ |f(z)|&\leq \frac{2r}{R-r}A(R)+\frac{R+r}{R-r}|f(0)|,\quad |z|=r. \eea \eeex$$

Carath\'eodory 不等式的更多相关文章

  1. [学习笔记]四边形不等式优化DP

    形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w ...

  2. hiho #1223 不等式

    #1223 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定n个关于X的不等式,问最多有多少个成立. 每个不等式为如下的形式之一: X < C X ...

  3. hdu 3506 Monkey Party 区间dp + 四边形不等式优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...

  4. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  5. 石子合并(四边形不等式优化dp) POJ1160

    该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...

  6. UVa 10003 (可用四边形不等式优化) Cutting Sticks

    题意: 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用. 分析: d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用.则有d(i, j) = ...

  7. hihocoder #1223 : 不等式 水题

    #1223 : 不等式 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/problemset/problem/1223 ...

  8. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  9. 《A First Course in Probability》-chaper8-极限定理-各类不等式

    詹森不等式: 证明:

随机推荐

  1. lightoj1074 最短路

    题意:有n个城市,每个城市有拥挤值,有一些单向道路,从某个城市到另一个城市的花费是拥挤值差的三次方,当然可能是负的值.问从1点到某点最少的花费,若小于3或不能到达输出“?” 建图的边权是拥挤值差的三次 ...

  2. 越狱Season 1-Episode 1: the pilot

    the pilot: 美国电视剧新剧开播都会有一个试播来测试观众对新剧的接受程度,以此来决定是否再继续播下去,也可以说是一个开端,第一集,试播 -Tattoo Artist: That's it. t ...

  3. Flash pixel Bender学习笔记

    pixel Bender是指用来创建,编译,测试和导出pixel shader,用于各种flash产品的一个IDE. Pixel Bender是Adobe推出的一个高性能的图像视频处理技术.它能跨平台 ...

  4. mysql SQL SERVER 的算法

    Filesort Probes http://dev.mysql.com/doc/refman/5.7/en/dba-dtrace-ref-filesort.html http://dev.mysql ...

  5. jquery ajax POST 例子详解

    function test(){ $.ajax({ //提交数据的类型 POST GET type:"POST", //提交的网址 url:"testLogin.aspx ...

  6. Integer.parseInt()和Integer.valueOf()有什么区别

    jdk的源代码的时候注意到Integer.parseInt(s) 和 Integer.valueOf(s)的具体代码的实现有所区别: Java代码 public static int parseInt ...

  7. 00-Java 语言简介

    一.开发环境搭建: (一).JAVA语言简介: 1.JAVA语言简介: (1)什么是JAVA:Java是一种计算机编程语言.它是一种计算机编程语言.它是一种软件开发平台.它是一种软件运行平台.它是一种 ...

  8. wikioi 1203 判断浮点数是否相等

    /*======================================================================== 1203 判断浮点数是否相等 题目描述 Descr ...

  9. html之内联标签img

    img创建的是被链接图像的占位空间,它不会真正地在网页插入图像. 两个必须属性: src:图像的超链接 alt:图像的替代文本 可选属性: height:高度 width:宽度 ismap:将图像定义 ...

  10. flex html 用flex展示html

    1. 目的 flex展示html 可以保护网页内容 2. 参考 http://stackoverflow.com/questions/260270/display-html-in-an-actions ...