1.配置多个executor

在项目中,由于数据量为几百万甚至千万级别,如果一个executor装载的对象过多,会导致GC很慢。项目中,我们使一个worker节点执行app时启动多个executor,从而加大并发度,解决full GC慢的问题。同时,由于启动了多个exeucute,在内存与核数不变的情况下,需要调整分配给每个execute的内存数及核数。

2.配置数据序列化

Spark默认序列化方式为Java的ObjectOutputStream序列化一个对象,速度较慢,序列化产生的结果有时也比较大。所以项目中我们使用kryo序列化方式,通过kryo序列化,使产生的结果更为紧凑,减少内存的占用空间,同时减少了对象本身的元数据信息与基本数据类型的开销,从而更好地提高了性能。

3.优化缓存大小

Spark默认用于缓存RDD的空间为一个executor的60%,项目中由于考虑到标签数量为成百个,使用同样规则与数量的标签进行客户群探索及客户群生成的概率很小。所以修改spark.storage.memoryFaction=0.4,这样使百分之60%的内存空间可以在task执行过程中缓存创建新对象,从而加大task的任务执行效率。

4.控制并行度

项目中,由于标签的周期性有两种,分别是日标签与月标签,分别对应hdfs上的日宽表与月宽表。同时选中多个日与月标签进行客户群探索时,SQL会出现多个join的情况。在spark中join操作属于宽依赖,RDD在计算的时候需要进行类似于MapReduce的shuffle操作。Spark官网推荐为每个cpu Core分配2到3个任务,所以在32个core的服务器上,我们通过配置spark.default.parallelise=64,设置cpu的并行数量,从而防止并行度太高导致的任务启动与切换的开销。

5.  参数spark.shuffle.memoryFraction spark应用程序在所申请的内存资源中可用于shuffle的比例

SQL级别的优化:

1.优化sql结构

传统的行式存储数据库在经过where条件筛选后,依旧会将整行的数据提到内存中进行数据处理,所以使用select * from table与select 字段 from table运行效率是一样的。但HDFS上我们通过hive的接口创建的为列式存储的parquet格式表结构,列式存储表结构只是将涉及到的字段加载到内存中,从而降低了IO,至此将代码中所有的sql拼接统一改为了条件字段。极大地提高了查询效率。

2.表关联方式的改变

sparkSQL的查询优化是基于Scala语言开发的Catalyst,在最后的执行阶段,会在Spark内部将执行计划转化为有向无环图DAG进行执行。在逻辑优化阶段,Catalyst将SQL进行谓词下压,优先执行where条件后的筛选,过滤了大部分数据之后,通过属性之间的合并只做一次最后的投影,从而极大地提高查询效率。但在使用时发现,执行两表left join时,并未按照Catalyst的解析优先执行where条件的筛选,但使用inner join时发现执行了Catalyt解析如图5-12 sql解析过程图所示,至此我们将spark中的left join改为了inner join.

图5-12 SQL解析过程图

3.修改表数据类型

后台通过spark-shell执行编写好的scala代码的jar包,由于现有版本的spark的parquet存储格式无法更好的支持decimal数据类型,只能生成json格式的标签宽表。至此,将从数据仓库中挖掘出的数据源表中的浮点型数据类型统一改为double数据类型,最终生成的parquet格式的宽表在hdfs上节省的空间为json格式的3倍,前台对标签宽表的关联查询也提高了4倍。

Spark配置参数调优的更多相关文章

  1. spark submit参数调优

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...

  2. spark 资源参数调优

    资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了.所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使 ...

  3. 一次tomcat配置参数调优Jmeter压力测试记录前后对比

    使用的tomcat版本为:apache-tomcat-7.0.53 使用测试工具Jmeter版本为:apache-jmeter-2.12 1.测试前tomat的"server.xml&quo ...

  4. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

  5. Spark(六)Spark之开发调优以及资源调优

    Spark调优主要分为开发调优.资源调优.数据倾斜调优.shuffle调优几个部分.开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础:数据倾斜调优,主 ...

  6. Spark:性能调优

    来自:http://blog.csdn.net/u012102306/article/details/51637366 资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理 ...

  7. 基于CDH 5.9.1 搭建 Hive on Spark 及相关配置和调优

    Hive默认使用的计算框架是MapReduce,在我们使用Hive的时候通过写SQL语句,Hive会自动将SQL语句转化成MapReduce作业去执行,但是MapReduce的执行速度远差与Spark ...

  8. 【Spark篇】---Spark中内存管理和Shuffle参数调优

    一.前述 Spark内存管理 Spark执行应用程序时,Spark集群会启动Driver和Executor两种JVM进程,Driver负责创建SparkContext上下文,提交任务,task的分发等 ...

  9. 【Spark调优】Shuffle原理理解与参数调优

    [生产实践经验] 生产实践中的切身体会是:影响Spark性能的大BOSS就是shuffle,抓住并解决shuffle这个主要原因,事半功倍. [Shuffle原理学习笔记] 1.未经优化的HashSh ...

随机推荐

  1. HTML 常见代码整合;

    html+css代码 文本设置 1.font-size: 字号参数 2.font-style: 字体格式 3.font-weight: 字体粗细 4.颜色属性 color: 参数 注意使用网页安全色 ...

  2. spark新能优化之序列化的持久化级别

    除了对多次使用的RDD进行持久化操作之外,还可以进一步优化其性能.因为很有可能,RDD的数据是持久化到内存,或者磁盘中的.那么,此时,如果内存大小不是特别充足,完全可以使用序列化的持久化级别,比如ME ...

  3. ExtJS Panel主要配置列表

    Ext.panel.Panel 属性 值 描述 animCollapse Boolean 设置面板折叠展开是否显示动画,Ext.Fx可用默认true,否则false applyTo Mixed 面板定 ...

  4. spring源码学习【准备】之jdk动态代理和cglib动态代理的区别和性能

    一:区别:---->JDK的动态代理依靠接口实现,如果有些类并没有实现接口,则不能使用JDK代理,这就要使用cglib动态代理了.--->JDK的动态代理机制只能代理实现了接口的类,而不能 ...

  5. sersync2 实时同步配置

    在同步服务器上开启sersync,将监控路径中的文件同步到目标服务器,因此需要在同步服务器配置sersync,在同步目标服务器配置rsync. 一.同步目标服务器配置rsync # rpm -qa | ...

  6. Unity3D研究院编辑器之脚本设置ToolBar

    Unity版本5.3.2 如下图所示,ToolBar就是Unity顶部的那一横条.这里的所有按钮一般情况下都得我们手动的用鼠标去点击.这篇文章我们说说如果自动操作它们 1.自动点击左边四个按钮 (拖动 ...

  7. oracle数据字典-权限-角色

    每个数据库都提供了各自的数据字典的方案,虽然形式不同,但是目的和作用是一样的,比如在mysql里数据字典是在information_schema 里表现的,sqlserver则是在sys这个系统sch ...

  8. web前端-面试经验总结

    这几次面试主要是冲着百度去的 面试1的主要问题: 笔试: 1.解释css盒子模型 2.常用选择器,以及优先级 3.B如何继承A 4.写一个闭包实例,有什么优点缺点 5.html5的心特性有哪些 6. ...

  9. 数据库表转换成javaBean对象小工具

    package test.utils; import java.io.FileWriter;import java.io.IOException;import java.io.PrintWriter; ...

  10. log4j加日志的方法-转

    如何使用log4j记录日志第一步:在工程中加入log4j所使用的jar文件1:项目 >  属性 :弹出项目的属性窗口2:Java构建路径>?库>?添加外部JAR:弹出选择JAR的窗口 ...