Codeforces Round #131 (Div. 1) B. Numbers dp
题目链接:
http://codeforces.com/problemset/problem/213/B
B. Numbers
time limit per test 2 secondsmemory limit per test 256 megabytes
#### 问题描述
> Furik loves writing all sorts of problems, especially such that he can't solve himself. You've got one of his problems, the one Furik gave to Rubik. And Rubik asks you to solve it.
>
> There is integer n and array a, consisting of ten integers, indexed by numbers from 0 to 9. Your task is to count the number of positive integers with the following properties:
>
> the number's length does not exceed n;
> the number doesn't have leading zeroes;
> digit i (0 ≤ i ≤ 9) occurs in the number at least a[i] times.
#### 输入
> The first line contains integer n (1 ≤ n ≤ 100). The next line contains 10 integers a[0], a[1], ..., a[9] (0 ≤ a[i] ≤ 100) — elements of array a. The numbers are separated by spaces.
#### 输出
> On a single line print the remainder of dividing the answer to the problem by 1000000007 (109 + 7).
#### 样例
> **sample input**
> 3
> 1 1 0 0 0 0 0 0 0 0
>
> **sample output**
> 36
note
numbers 10, 110, 210, 120, 103 meet the requirements. There are other suitable numbers, 36 in total.
题意
给你0到9这十个数字,第i个数至少要用a[i]次,问能拼成的长度小于等于n的正整数(不能有前导零)
题解
dp[i][len]表示利用i到9的数字能拼成的长度为len的所有可能数。
状态转移方程:dp[i][len]=sigma(dp[i+1][len-k]*C[len][k])。
相当于是在用i+1到9凑成的长度为len-k的数字串里面塞进去k个i的所有可能数。用乘法原理可知去掉已经统计出来的len-k,我们要处理的就是从len里面选k个位置来放i。
注意:由于前导零不用考虑,而且只要统计正整数,所以我们在放0的时候,是不能让零放在第一位的,对于0我们可以特殊处理一下。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef __int64 LL;
const int maxn = 111;
const int mod = 1e9 + 7;
int dig[22],n;
LL dp[22][maxn];
LL C[maxn][maxn];
void pre() {
memset(C, 0, sizeof(C));
C[0][0] = 1;
for (int i = 1; i < maxn; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++) {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
C[i][j] %= mod;
}
}
}
int main() {
pre();
scanf("%d", &n);
for (int i = 0; i < 10; i++) {
scanf("%d", &dig[i]);
}
memset(dp, 0, sizeof(dp));
dp[10][0] = 1;
for (int i = 9; i > 0; i--) {
for (int j = 0; j < maxn; j++) {
for (int k = dig[i]; k <=j; k++) {
dp[i][j] += dp[i + 1][j - k] * C[j][k];
dp[i][j] %= mod;
}
}
}
for (int j = 0; j < maxn; j++) {
for (int k = dig[0]; k < j; k++) {
dp[0][j] += dp[1][j - k] * C[j - 1][k];
dp[0][j] %= mod;
}
}
LL ans = 0;
for (int j = 1; j <= n; j++) {
ans += dp[0][j];
ans %= mod;
}
printf("%I64d\n", ans);
return 0;
}
Codeforces Round #131 (Div. 1) B. Numbers dp的更多相关文章
- Codeforces Round #131 (Div. 2) B. Hometask dp
题目链接: http://codeforces.com/problemset/problem/214/B Hometask time limit per test:2 secondsmemory li ...
- Codeforces Round #131 (Div. 2) E. Relay Race dp
题目链接: http://codeforces.com/problemset/problem/214/E Relay Race time limit per test4 secondsmemory l ...
- Codeforces Round #260 (Div. 1) A - Boredom DP
A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...
- Codeforces Round #131 (Div. 2)
A. System of Equations \(a\)的范围在\(\sqrt n\)内,所以暴力枚举即可. B. Hometask 需要被2.5整除,所以末位必然为0,如果0没有出现,则直接返回-1 ...
- Codeforces Round #276 (Div. 1) D. Kindergarten dp
D. Kindergarten Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/proble ...
- Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS
题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...
- Codeforces Round #539 (Div. 2) 异或 + dp
https://codeforces.com/contest/1113/problem/C 题意 一个n个数字的数组a[],求有多少对l,r满足\(sum[l,mid]=sum[mid+1,r]\), ...
- Codeforces Round #374 (Div. 2) C. Journey DP
C. Journey 题目连接: http://codeforces.com/contest/721/problem/C Description Recently Irina arrived to o ...
- Codeforces Round #202 (Div. 1) D. Turtles DP
D. Turtles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/547/problem/B ...
随机推荐
- silverlight 获取路径 config
1.获取web.config配置内容: web.config default.aspx protected string InitParams { get; set; } InitParams = s ...
- FusionCharts X轴显示方式
本文摘自ITYPE 网站的wangxiao5530 原文网址为:http://wangxiao5530.iteye.com/blog/1454200 1)Wrap Mode (换行模式) <ch ...
- 无需server-U IIS7.5 在已有的多个WEB网站上配置FTP发布
1 新建一个用于ftp登陆的计算机用户. 操作:开始→管理工具→计算机管理→本地用户和组→用户,新建一个计算机用户,设置好用户名和密码,例如:nenkea nkscl 2 在web站点文件夹下,把新建 ...
- text-rendering 详解
原文链接:http://www.feeldesignstudio.com/2013/05/text-rendering Text-rendering 属性是一个非标准属性,主要用来告诉渲染引擎(ren ...
- android 客户端支付宝 php服务器端编写
生成私钥 输入“genrsa -out rsa_private_key.pem 1024”命令,回车后,在当前 bin 文件目 录中会新增一个 rsa_private_key.pem 文件,其文件为原 ...
- EcShop二次开发系列教程–总纲
EcShop作为老牌的B2C独立网店系统,功能非常全名,强大的文件.数据库缓存机制,保证前后台系统执行速度更快.系统平稳运行.但是过多的功能也或多或少的会影响到系统的整个效率,所有在使用EcShop搭 ...
- Java求和
用while结构求0~100的整数数字之和. 代码如下: public class WhileDemo { public static void main(String[] args) { int l ...
- [.NET 4.5] ADO.NET / ASP.NET 使用 Async 和 Await 异步 存取数据库
此为文章备份,原文出处(我的网站) [.NET 4.5] ADO.NET / ASP.NET 使用 Async 和 Await 异步 存取数据库 http://www.dotblogs.com.tw ...
- ruby 程序中的文字编码
1,问题 在写一个统计代码行数的脚本时遇到一个问题: 代码: file_name = "code.rb"c = 0File.foreach(file_name) do |x| ne ...
- SQL开发 循序渐进
吉庆师傅整理: http://www.itpub.net/thread-1418150-1-1.html