题目

子异和这个名字,真是思博

显然一个集合的子集异或和为,\(2^{|S|-1}\times A\),\(A\)为集合的或和

于是现在的问题变成了树链异或一个数,求树链或和

显然强行拆位是可以做的,复杂度\(O(n\log n\ \log mod)\),还是\(\rm lct\)于是直接飞了

通过一番玄妙重重的推理,我们发现,整体异或上\(c\),对或和的影响是

\[\cup'=(\cup\&∼c)|(c\&∼\cap)
\]

这样我们还需要维护与和

\[\cap'=(\cap\&∼c)|(c\&∼\cup)
\]

直接\(\rm lct\)维护即可,注意维护与和的时候记得判断当左右儿子为空时就不要取与了

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
const int mod=1e9+7;
const int maxn=2e5+5;
#pragma GCC optimize(3)
#pragma GCC optimize("-fcse-skip-blocks")
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
unsigned int v[2][maxn],s[2],tag[maxn];
int ch[maxn][2],fa[maxn],sz[maxn],rev[maxn],st[maxn],a[maxn];
int xx[maxn],yy[maxn],pw[maxn],n,Q;
inline int nrt(int x) {return x==ch[fa[x]][0]||x==ch[fa[x]][1];}
inline void pushup(int x) {
sz[x]=1+sz[ch[x][0]]+sz[ch[x][1]];
v[1][x]=v[0][x]=a[x];
v[0][x]|=(v[0][ch[x][0]]|v[0][ch[x][1]]);
if(ch[x][0]) v[1][x]=(v[1][x]&v[1][ch[x][0]]);
if(ch[x][1]) v[1][x]=(v[1][x]&v[1][ch[x][1]]);
}
inline void calc(int x,unsigned int c) {
if(!x) return;
a[x]^=c,tag[x]^=c;
s[0]=v[0][x],s[1]=v[1][x];
v[0][x]=(s[0]&~c)|(c&~s[1]);
v[1][x]=(s[1]&~c)|(c&~s[0]);
}
inline void pushdown(int x) {
if(tag[x]) {
calc(ch[x][0],tag[x]),calc(ch[x][1],tag[x]);
tag[x]=0;
}
if(rev[x]) {
rev[x]=0,rev[ch[x][0]]^=1;rev[ch[x][1]]^=1;
std::swap(ch[ch[x][0]][0],ch[ch[x][0]][1]);
std::swap(ch[ch[x][1]][0],ch[ch[x][1]][1]);
}
}
inline void rotate(int x) {
int y=fa[x],z=fa[y],k=ch[y][1]==x,w=ch[x][k^1];
if(nrt(y)) ch[z][ch[z][1]==y]=x;
ch[x][k^1]=y,ch[y][k]=w;
pushup(y),pushup(x);fa[w]=y,fa[y]=x,fa[x]=z;
}
inline void splay(int x) {
int y=x,top=0;st[++top]=x;
while(nrt(y)) y=fa[y],st[++top]=y;
while(top) pushdown(st[top--]);
while(nrt(x)) {
int y=fa[x];
if(nrt(y)) rotate((ch[y][1]==x)^(ch[fa[y]][1]==y)?x:y);
rotate(x);
}
}
inline void access(int x) {
for(re int y=0;x;y=x,x=fa[x])
splay(x),ch[x][1]=y,pushup(x);
}
inline void mrt(int x) {
access(x),splay(x),rev[x]^=1;std::swap(ch[x][0],ch[x][1]);
}
inline void split(int x,int y) {
mrt(x),access(y),splay(y);
}
inline void link(int x,int y) {
mrt(x),fa[x]=y;
}
int main() {
n=read();Q=read();
for(re int i=1;i<n;i++) xx[i]=read(),yy[i]=read();
for(re int i=1;i<=n;i++) a[i]=read(),sz[i]=1;
for(re int i=1;i<n;i++) link(xx[i],yy[i]);
pw[0]=1;int x,y,op;unsigned int c;
for(re int i=1;i<=n;++i) pw[i]=(pw[i-1]+pw[i-1])%mod;
while(Q--) {
op=read();x=read(),y=read();split(x,y);
if(op==1) printf("%d\n",1ll*v[0][y]%mod*pw[sz[y]-1]%mod);
else c=read(),calc(y,c);
}
return 0;
}

【LGP5127】子异和的更多相关文章

  1. 【转】Spring事务管理

    原文链接 在 Spring 中,事务是通过 TransactionDefinition 接口来定义的.该接口包含与事务属性有关的方法.具体如清单 1 所示: 清单 1. TransactionDefi ...

  2. 从源码看全局异常处理器@ExceptionHandler&@ExceptionHandler的生效原理

    1.开头在前 日常开发中,几乎我们的项目都会用到异常处理器,我们通常会定制属于自己的异常处理器,来处理项目中大大小小.各种各样的异常.配置异常处理器目前最常用的方式应该是使用@ControllerAd ...

  3. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  4. Java的位运算符详解实例——与(&)、非(~)、或(|)、异或(^)

    位运算符主要针对二进制,它包括了:“与”.“非”.“或”.“异或”.从表面上看似乎有点像逻辑运算符,但逻辑运算符是针对两个关系运算符来进行逻辑运算,而位运算符主要针对两个二进制数的位进行逻辑运算.下面 ...

  5. BRIEF 特征描述子

    Binary Robust Independent Elementary Features www.cnblogs.com/ronny 1. BRIEF的基本原理 我们已经知道SIFT特征采用了128 ...

  6. 《Xenogears》(异度装甲)隐含的原型与密码

    <Xenogears>(异度装甲)隐含的原型与密码 X 彩虹按:一种高次元的“生命体”,因“事故”被抓来当成“超能源”,其实那不只是“无限的能源”而已,“它”是有意志的!在我们眼里看来,这 ...

  7. [改善Java代码]数组的真实类型必须是泛型类型的子类型

    List接口的toArray方法可以把一个结合转化为数组,但是使用不方便,toArray()方法返回的是一个Object数组,所以需要自行转变. toArray(T[] a)虽然返回的是T类型的数组, ...

  8. HJA的异或值

    HJA的异或值 查看 提交 统计 提问 总时间限制:  20000ms 内存限制:  512000kB 描述 形态形成场(Morphogenetic Field)假说是Rupert Sheldrake ...

  9. [每日一题] OCP1z0-047 :2013-07-24 子查询――外查询与内查询的执行顺序

    一.Oracle的子查询分为两类分别是嵌套子查询和非嵌套子查询.所谓嵌套子查询是指,子查询是一个独立的查询不与外部查询相关,子查询将被先执行,而且只被执行一次,子查询执行完成后,再执行外部的查询,外部 ...

随机推荐

  1. C语言变长参数实现

    #include<stdio.h> #include<string.h> #include<stdarg.h> /***编写可变长参数列表的函数案例*/ /* vo ...

  2. js分割url提取参数

    //分割url提取参数 var url = Window.location.search;//获取url地址?至结尾的所有参数 //key(需要检错的键) url(传入的需要分割的url地址) fun ...

  3. HDU 6627 equation (分类讨论)

    2019 杭电多校 5 1004 题目链接:HDU 6627 比赛链接:2019 Multi-University Training Contest 5 Problem Description You ...

  4. MySQL之explain命令解释

    explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了.如: explai ...

  5. Java8中Map的遍历方式总结

    在这篇文章中,我将对Map的遍历方式做一个对比和总结,将分别从JAVA8之前和JAVA8做一个遍历方式的对比,亲测可行. public class LambdaMap { private Map< ...

  6. springboot1.5.x升级到2.1.x切换分支导致的maven依赖混乱

    背景:项目springboot版本由1.5.X升级到2.1.X,两个版本的分支需要共存,来回切换的时候,maven依赖各种报红 查看dependency发现1.5.X的jar和2.1.X的jar都存在 ...

  7. 《深入理解Java虚拟机》-(实战)boolean类型在虚拟机中是如何处理的

    这里先引出Java的8大基本类型.直接上图吧. 可以看到,除了boolean和char类型之外,越往下的类型的值域是包含以上的值域的.因此,从上面的基本类型转换成下面的基本类型,无需强制转换.关于它们 ...

  8. android项目各个文件详解

    res目录说明 android应用的res目录是一个特殊的目录,该项目里存放了 android应用所用的全部资源,包括图片资源.字符串资源. 颜色资源.尺寸资源等. /res/value/string ...

  9. 《代码大全2》读书笔记 Week4

    <代码大全2>第8章:防御式编程 防御式编程的主要思想是子程序应该不因为非法的输入值被破坏,就好比开车时的防御式驾驶:你无法预估其他司机将会做什么,但你要采取措施保证当他人做出危险动作时自 ...

  10. 枚举对象中的属性 for . . in

    枚举对象中的属性:把对象中所有的属性和值都取出来 使用 for . . . in 语句 语法: for(var  变量  in  对象){ } for  . . . in 语句  对象中有几个属性,循 ...