BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意:
4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法
1000次询问,numi<1e5
思路:
完全背包计算出没有numi限制下的买法,
然后答案为dp[V]-(s1+s2+s3+s4)+(s12+s13+s14+s23+s24+s34)-(s123+s124+s134+s234)+s1234 其中s...为某硬币超过限制的方案数 求s的方法: 如s1:硬币1超过限制,就是硬币1至少选了num1+1个,其他随便,所以s1=dp[V-c1*(num1+1)] 同理s12 = dp[V - c1 * (num1 + 1) - c2 * (num2 + 1)] 代码:#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 2e6+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); ll dp[maxn];
ll c[];
ll v[maxn];
ll num[];
ll ans,V;
//dfs搜容斥组合
void dfs(int x, int k, ll sum){//搜到第x个,已经选了k个,当前组合一共需要减sum
//printf("%d %d %lld\n",x,k,sum);
if(V-sum < )return;
if(x==){
//容斥判断该加还是减
if(k==)return;
if(k&) ans += dp[V-sum];
else ans -= dp[V-sum];
return;
}
dfs(x+, k, sum);//当前不选
dfs(x+,k+,sum+c[x]*(num[x]+));//选
}
int main(){
for(int i = ; i <= ; i++){
scanf("%lld", &c[i]);
}
int T;
scanf("%d", &T);
dp[] = ;
for(int i = ; i <= ; i++){
for(int j = ; j <= maxn; j++){
if(j-c[i]>=)dp[j] += dp[j-c[i]];
}
}
while(T--){
for(int i = ; i <= ; i++){
scanf("%lld", &num[i]);
}
scanf("%lld", &V);
ans = ;
dfs(, , );
printf("%lld\n",dp[V]-ans);
}
return ;
} /*
1 2 5 10 1
3 2 3 1 10 */
[HAOI2008]硬币购物否
BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)的更多相关文章
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
- Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥+背包
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)
题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...
随机推荐
- shell 概览
shell能做什么: 1. 自动化批量系统初始化程序(update,软件安装,时区设置,安全策略...) 2. 自动化批量软件部署程序(LAMP,LNMP,Tomcat,LVS,Nginx) 3. 管 ...
- JavaScript 继承小记
面向对象编程很重要的一个方面,就是对象的继承.A 对象通过继承 B 对象,就能直接拥有 B 对象的所有属性和方法.这对于代码的复用是非常有用的. 大部分面向对象的编程语言,都是通过“类”(class) ...
- ffmpeg 视频合并
/// <summary> /// 视频合并 /// </summary> /// <param name="File1">第一个视频地址< ...
- JVM之JVM的体系结构
一.JDK的组成 JDK:JDK是Java开发工具包,是Sun Microsystems针对Java开发员的产品.JDK中包含JRE(在JDK的安装目录下有一个名为jre的目录,里面有两个文件夹bin ...
- [论文翻译]Practical Diversified Recommendations on YouTube with Determinantal Point Processes
目录 ABSTRACT(摘要) 1 INTRODUCTION(简介) 2 RELATED WORK 2.1 Diversification to Facilitate Exploration(对应多样 ...
- NOIP提高组2018试题解析 目录
重磅来袭! 本蒟蒻准备挑战一下NOIP2018提高组的试题啦(怎么办 我猜我连10分都拿不了) 目录: Day1 1.铺设道路 讲解 得分:100 2.货币系统 讲解 3.赛道修建 讲解 ...
- P1828 香甜的黄油 Sweet Butter 最短路 寻找一个点使得所有点到它的距离之和最小
P1828 香甜的黄油 Sweet Butter 闲来无事 写了三种最短路(那个Floyed是不过的) 题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1 ...
- 关于程序员须知的 linux 基础
我在 github 上新建了一个仓库 日问,每天一道面试题,有关前端,后端,devops以及软技能,促进职业成长,敲开大厂之门,欢迎交流 并且记录我的面试经验 17年面试记(阿里百度美团头条小米滴滴) ...
- Falco 进入 CNCF Incubator 项目 | 云原生生态周报 Vol. 35
作者 | 王思宇.陈洁.敖小剑 业界要闻 Falco 进入 CNCF Incubator 项目 原于 2018 年 8 月进入 sandbox,旨在 Kubernetes 运行时环境下支持配置规则来加 ...
- iOS使用fastlane自动化打包到fir(最全最详细流程)
# iOS使用fastlane自动化打包到fir(最全最详细流程)1. **首先确认是否安装了ruby,终端查看下ruby版本**> ruby -v终端输出:ruby 2.4.1p111 (20 ...