深度炼丹如同炖排骨一般,需要先大火全局加热,紧接着中火炖出营养,最后转小火收汁。
本文给出炼丹中的 “火候控制器”-- 学习率的几种调节方法,框架基于 pytorch

1. 自定义根据 epoch 改变学习率。

这种方法在开源代码中常见,此处引用 pytorch 官方实例中的代码 adjust_lr

def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr

注释:在调用此函数时需要输入所用的 optimizer 以及对应的 epoch ,并且 args.lr 作为初始化的学习率也需要给出。

使用代码示例:

optimizer = torch.optim.SGD(model.parameters(),lr = args.lr,momentum = 0.9)
for epoch in range(10):
adjust_learning_rate(optimizer,epoch)
train(...)
validate(...)

2. 针对模型的不同层设置不同的学习率

当我们在使用预训练的模型时,需要对分类层进行单独修改并进行初始化,其他层的参数采用预训练的模型参数进行初始化,这个时候我们希望在进行训练过程中,除分类层以外的层只进行微调,不需要过多改变参数,因此需要设置较小的学习率。而改正后的分类层则需要以较大的步子去收敛,学习率往往要设置大一点以 resnet101 为例,分层设置学习率。

model = torchvision.models.resnet101(pretrained=True)
large_lr_layers = list(map(id,model.fc.parameters()))
small_lr_layers = filter(lambda p:id(p) not in large_lr_layers,model.parameters())
optimizer = torch.optim.SGD([
{"params":large_lr_layers},
{"params":small_lr_layers,"lr":1e-4}
],lr = 1e-2,momenum=0.9)

注:large_lr_layers 学习率为 1e-2,small_lr_layers 学习率为 1e-4,两部分参数共用一个 momenum

3. 根据具体需要改变 lr

以前使用 keras 的时候比较喜欢 ReduceLROnPlateau 可以根据 损失或者 准确度的变化来改变 lr。最近发现 pytorch 也实现了这一个功能。

class torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

以 acc 为例,当 mode 设置为 “max” 时,如果 acc 在给定 patience 内没有提升,则以 factor 的倍率降低 lr。

使用方法示例:

optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
scheduler = ReduceLROnPlateau(optimizer, 'max',verbose=1,patience=3)
for epoch in range(10):
train(...)
val_acc = validate(...)
# 降低学习率需要在给出 val_acc 之后
scheduler.step(val_acc)

4. 手动设置 lr 衰减区间

使用方法示例

def adjust_learning_rate(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr for epoch in range(60):
lr = 30e-5
if epoch > 25:
lr = 15e-5
if epoch > 30:
lr = 7.5e-5
if epoch > 35:
lr = 3e-5
if epoch > 40:
lr = 1e-5
adjust_learning_rate(optimizer, lr)

5. 余弦退火

论文: SGDR: Stochastic Gradient Descent with Warm Restarts

使用方法示例

epochs = 60
optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=1e-4)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer,T_max = (epochs // 9) + 1)
for epoch in range(epochs):
scheduler.step(epoch)

目前最常用的也就这么多了,当然也有很多其他类别,详情见 how-to-adjust-learning-rate

参考文献

标签: pytorch

pytorch 动态调整学习率 重点的更多相关文章

  1. pytorch识别CIFAR10:训练ResNet-34(自定义transform,动态调整学习率,准确率提升到94.33%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面通过数据增强,ResNet-34残差网络识别CIFAR10,准确率达到了92.6. 这里对训练过程 ...

  2. pytorch中调整学习率的lr_scheduler机制

    有的时候需要我们通过一定机制来调整学习率,这个时候可以借助于torch.optim.lr_scheduler类来进行调整:一般地有下面两种调整策略:(通过两个例子来展示一下) 两种机制:LambdaL ...

  3. [pytorch笔记] 调整网络学习率

    1. 为网络的不同部分指定不同的学习率 class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__init__() self ...

  4. 【转载】 Pytorch中的学习率调整lr_scheduler,ReduceLROnPlateau

    原文地址: https://blog.csdn.net/happyday_d/article/details/85267561 ------------------------------------ ...

  5. pytorch中的学习率调整函数

    参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供 ...

  6. Pytorch调整学习率

    每隔一定的epoch调整学习率 def adjust_learning_rate(optimizer, epoch): """Sets the learning rate ...

  7. 在 Web 级集群中动态调整 Pod 资源限制

    作者阿里云容器平台技术专家 王程阿里云容器平台技术专家 张晓宇(衷源) ## 引子 不知道大家有没有过这样的经历,当我们拥有了一套 Kubernetes 集群,然后开始部署应用的时候,我们应该给容器分 ...

  8. 动态线程池(DynamicTp)之动态调整Tomcat、Jetty、Undertow线程池参数篇

    大家好,这篇文章我们来介绍下动态线程池框架(DynamicTp)的adapter模块,上篇文章也大概介绍过了,该模块主要是用来适配一些第三方组件的线程池管理,让第三方组件内置的线程池也能享受到动态参数 ...

  9. 如何实现可动态调整隐藏header的listview

    (转自:http://blog.sina.com.cn/s/blog_70b9730f01014sgm.html) 需求:根据某种需要,可能需要动态调整listview的页眉页脚,譬如将header作 ...

随机推荐

  1. 关于layui部分表单不显示的问题(Select, checkBox)

    原因: 没有使用JS进行初始化 官方说明: https://www.layui.com/doc/base/faq.html layui.use('form', function(){ var form ...

  2. 微信小程序之组件开发中的基础知识

    跟着视频开始小程序的项目的开发,视频中这个小程序已经上线了,可以很好的看着小程序的界面进行开发,昨天看了一下具体的需求,觉得真的细节好多啊,而且其中设计的组件的思想也是很好的,能够很好的实现代码的复用 ...

  3. farv

    http://weishu.me/ https://github.com/jimupon/VirtualXposed O:  ?  api 26 - vdex N: speed-profile M: ...

  4. 001. 注释过的boot.s

    从网上搜罗一个很详细注释的boot.s版本,加了小小一点点自己的理解,不太多. 用 as86, ld86 可以编译,   ubuntu下可以通过 apt install bin86 来安装好像. ; ...

  5. 利用ajax异步校验验证码(转)

    利用ajax异步校验验证码 示例结果如图所示 具体步骤如下: step1: jsp页面及js脚本 <%@page pageEncoding="utf-8" contentTy ...

  6. 项目管理知识图谱OR架构图

    做项目管理,心中一定要有知识图谱,科学的知识储备+100%执行力=好的管理者. 德鲁克所言:  领导是“做正确的事”,管理是“把事做正确”.

  7. 【水滴石穿】imooc_gp

    这个项目应该是一个标杆项目,看到之前很有几个项目都是按照这个项目的页面摆放顺序来的 不过可以作为自己做项目的一种方式 源码地址为:https://github.com/pgg-pgg/imooc_gp ...

  8. PHP学习(语言结构语句)

    switch case语句 for循环语句: foreach循环语句 常用于遍历数组,一般有两种使用方式:不取下标.取下标. (1)只取值,不取下标 <?php foreach (数组 as 值 ...

  9. 盘点Apache毕业的11个顶级项目

    自1999年成立至今,Apache 软件基金会已成功建立起自己强大的生态圈.其社区涌现了非常多优秀的开源项目,同时有越来越多国内外项目走向这个国际开源社区进行孵化.据悉,目前所有的 Apache 项目 ...

  10. JMeter与LoadRunner的对比

    1. 界面.安装.协议支持.函数库.成本.开源 2. 都可以实现分布式负载,相对来说LoadRunner更强大一些 3. 都支持在windows和linux环境的负载生成器.控制台方面,Jmeter跨 ...