评分模型的检验方法和标准通常有:K-S指标、交换曲线、AR值、Gini数等。例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成功的应用价值。K-S值越大,表示评分模型能够将“好客户”、“坏客户”区分开来的程度越大。
评分模型的检验方法和标准通常有:K-S指标、交换曲线、AR值、Gini数等。例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成功的应用价值。K-S值越大,表示评分模型能够将“好客户”、“坏客户”区分开来的程度越大。
例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成功的应用价值。K-S值越大,表示评分模型能够将“好客户”、“坏客户”区分开来的程度越大。
信用评分模型介绍(一)
引言:对于信用评分模型,很多朋友或多或少有所了解,这里做一般性的介绍,并分享自己的多年从业经验。这边短文主要包括:信用评分模型,自变量的生成、筛选、分档和转换,及常用有监督学习模型。
信用评分模型
信用评分模型是一种有监督的学习模型(Supervised Learning),数据由一群自变量X和对应的因变量y构成。传统零售信用模型中,X大致分为客户的基本信息(年龄、性别、职业、学位等),财务信息(收入,每月生活消费,每月信贷还款额等),产品信息(LTV,信用卡类别,个人贷款用途等),征信信息(前6个月被查询次数,前6个信用卡最大利用率,未结清贷款数等);而一般取值0-1因变量y可以定义为在未来12个月是否出现欠款90天等.
经验备注:在大数据下,很多互联网公司对个人的评估不再局限于以上几种信息,而是根据更为广泛的数据源对个人进行更全面的刻画,故有称之为客户画像。数据维度会考虑个人在社会上留下的任何数据,如手机使用行为,理财行为,社交圈,网购行为,旅游行为等等等等。大家的各方面数据其实都在被不同的公司和不同的APP收集。。。
自变量的生成
自变量是信用风险的来源,除了考虑直接收集的变量,信用评分建模过程中往往需要建模人员产生更多的衍生变量。这部分工作要分析人员的直觉、长期经验的积累和数据挖掘技术的应用。大家可以通过京东和支付宝的评分一窥其自变量的维度:芝麻信用分为5个维度:身份特质,履约能力,信用历史,人脉关系,行为偏好;小白信用分也分为5个维度:身份,资产,关系,履约,偏好。
经验备注:现在越来越多的模型技术被应用于信用模型,但是个人觉得无论高级模型还是初级模型,最为重要的是更广泛的数据和产生更多更具有预测能力的自变量。
自变量的筛选
自变量一旦丰富了起来,就涉及到有效变量的筛选,大致可根据一下几个原则或方法:变量的直观意义(是否跟y有关),变量的单调性或合理性,未来是否可以获取以便模型可实施,变量的区分能力(IV),变量间相关性(变量聚类),变量缺失率,分档之后的稳定性等等。
经验备注:对于区分能力太强的变量,或缺失率很大的变量,不建议直接放入模型,可以考虑做成规则或者做成最后模型的调整。在大数据下,人们经常强调自变量与因变量的相关关系,应用于精准性要求不高的营销模型问题不大。而对于精准度要求极高的信用评分模型,相关关系的应用值得推敲。
自变量分档和转换
为了保持模型的稳定性,信用模型一般对自变量进行分档,比如根据风险不同把年龄分成几档。这样每档需要一个值来代表这段的自变量输入,这就是变量的转换,常见的有WOE和Logit转换。通过转换后不仅实现了稳定性要求,也克服不同变量间刻度不统一的问题,还克服回归中缺失值的填充问题。
经验备注:如果分档过粗糙,不但会降低单个变量的预测能力,也会造成最终评分集中度过高的问题。解决方法:可以考虑每档用线性插值来代替常数,也可以寻找更多能区分分数集中样本的自变量放入模型。
有监督学习模型介绍
目前比较流行的模型主要有以下几种(以后分享会逐一介绍):
Logistic 回归(Logistic Regression)
决策树(Decision Tree)
支持向量机(Support Vector Machine)
人工神经网络(Artificial Neural Network)
生存分析模型(Survival Analysis Model)
经验备注:除此上述之外,还有些高级方法或算法:集成方法(Ensemble Method)(例如随机森林(Random Forrest),Boosting,AdaBoost),深度学习方法(Deep Learning),随机梯度下降算法(Stochastic Gradient Descent)等。
评分模型的检验方法和标准通常有:K-S指标、交换曲线、AR值、Gini数等。例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成功的应用价值。K-S值越大,表示评分模型能够将“好客户”、“坏客户”区分开来的程度越大。的更多相关文章
- 评分模型的检验方法和标准&信用评分及实现
评分模型的检验方法和标准通常有:K-S指标.交换曲线.AR值.Gini数等.例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成 ...
- 门店评级VS坏客户
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- 大数据运算模型 MapReduce 原理
大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计 ...
- 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法
原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...
- zabbix监控Linux服务器CPU使用率大于40%的时候报警(实践版)
zabbix自带的模板里面有监控项,所以监控项就不用创建了,直接创建触发器就可以了,触发器细节如下: 名称:CPU使用率大于40% 严重性:严重 表达式:{121.201.54.50:system.c ...
- C#开发微信门户及应用(40)--使用微信JSAPI实现微信支付功能
在我前面的几篇博客,有介绍了微信支付.微信红包.企业付款等各种和支付相关的操作,不过上面都是基于微信普通API的封装,本篇随笔继续微信支付这一主题,继续介绍基于微信网页JSAPI的方式发起的微信支付功 ...
- Vintage_坏客户定义
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_ca ...
- C# 绘制窗体客户非客户区要用WM_PAINT和WM_NCPAINT
窗体分为两部分:客户区(Client area)和非客户区(Non-Client area) WM_PAINT消息.OnPaint()方法.GetDC()API函数都是处理窗体客户区绘制的 而标题 ...
- SQL游标+递归查询客户子客户转换率
ALTER PROCEDURE [dbo].[Account3YearsConversion ] as DECLARE @AccountId UNIQUEIDENTIFIER , @yearbefor ...
随机推荐
- Ubuntu小知识:更改主机名
Linux主机名是在安装Linux操作系统的过程中设定的,并作为网络中的某一台主机的唯一标志,但是在安装好Linux系统后,如果想修改主机名,该怎么办呢?本文介绍基于Ubuntu Desktop 9. ...
- CLTPHP5.0发布
CLTPHP内容管理系统,包含系统设置,权限管理,模型管理,数据库管理,栏目管理,会员管理,网站功能,模版管理,微信管理等相关模块. CLTPHP内容管理系统=ThinkPHP5+layuiAdm ...
- PyCharm使用之配置SSH Interpreter
在文章PyCharm使用之利用Docker镜像搭建Python开发环境中,该文章介绍了在PyCharm中如何利用Docker镜像搭建Python开发环境.在本文中,将会介绍如何使用PyCharm来 ...
- Ubuntu下安装Mongo方法
场景:Ubuntu14下安装mongo,建议不要使用apt-get install 的命令安装,因为版本比较老 1.deb下载地址(可以自行选择OS,版本,server或tool或shell)http ...
- PCL配置即常见问题
1 下载 把与VS版本对应PCL的AllInOne包下载下来.要下对安装包,需要了解安装包的命名的含义,以下面的一个AllInOne包的名字为例. PCL-1.8.0-AllInOne-msvc ...
- PHP 从 MongoDb 中查询数据怎么样实现
一.软件环境(版本非必须) php v5.6 扩展:MongoDB nginx v1.11 mongodb v3.2 note: 必须安装MongoDB扩展 二.连接 $client = new Mo ...
- html Servlet web.xml(转)
在浏览器输入:http://127.0.0.1:8080/test/test.html点击提交按钮,Tomcat后台输出:control: aaa's value is : bbb页面显示结果:pag ...
- oracle-600错误
event='10841 trace name context forever' 可以屏蔽这个ORA-00600错误. SQL> show parameter event NAME TYPE V ...
- Python发送邮件1(带附件的)
普通的发邮件(不使用类)
- 利用backtrace和ucontex定位segment错误
C程序运行时,经常会碰到"segmentfault"错误.这是由于程序中非法访问内存导致的.当操作系统的内存保护机制发现进程访问了非法内存的时候会向此进程发送一个SIGSEGV信号 ...