python的scikit-learn包下有计算tf-idf的api,研究了下做个笔记

1 安装scikit-learn包

sudo pip install scikit-learn

2 中文分词採用的jieba分词,安装jieba分词包

sudo pip install jieba

3  关于jieba分词的使用很easy,參考这里,关键的语句就是(这里简单试水,不追求效果4 )

import jieba.posseg as pseg
words=pseg.cut("对这句话进行分词")
for key in words:
print key.word,key.flag

输出结果:

对 p
这 r
句 q
话 n
进行 v
分词 n

 

4 採用scikit-learn包进行tf-idf分词权重计算关键用到了两个类:CountVectorizer和TfidfTransformer,详细參见这里

  一个简单的代码例如以下:

# coding:utf-8
__author__ = "liuxuejiang"
import jieba
import jieba.posseg as pseg
import os
import sys
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer if __name__ == "__main__":
corpus=["我 来到 北京 清华大学",#第一类文本切词后的结果。词之间以空格隔开
"他 来到 了 网易 杭研 大厦",#第二类文本的切词结果
"小明 硕士 毕业 与 中国 科学院",#第三类文本的切词结果
"我 爱 北京 天安门"]#第四类文本的切词结果
vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
transformer=TfidfTransformer()#该类会统计每一个词语的tf-idf权值
tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf。第二个fit_transform是将文本转为词频矩阵
word=vectorizer.get_feature_names()#获取词袋模型中的全部词语
weight=tfidf.toarray()#将tf-idf矩阵抽取出来。元素a[i][j]表示j词在i类文本中的tf-idf权重
for i in range(len(weight)):#打印每类文本的tf-idf词语权重,第一个for遍历全部文本,第二个for便利某一类文本下的词语权重
print u"-------这里输出第",i,u"类文本的词语tf-idf权重------"
for j in range(len(word)):
print word[j],weight[i][j]

程序输出:每行格式为:词语  tf-idf权重

-------这里输出第 0 类文本的词语tf-idf权重------           #该类相应的原文本是:"我来到北京清华大学"
中国 0.0
北京 0.52640543361
大厦 0.0
天安门 0.0
小明 0.0
来到 0.52640543361
杭研 0.0
毕业 0.0
清华大学 0.66767854461
硕士 0.0
科学院 0.0
网易 0.0
-------这里输出第 1 类文本的词语tf-idf权重------ #该类相应的原文本是: "他来到了网易杭研大厦"
中国 0.0
北京 0.0
大厦 0.525472749264
天安门 0.0
小明 0.0
来到 0.414288751166
杭研 0.525472749264
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.525472749264
-------这里输出第 2 类文本的词语tf-idf权重------ #该类相应的原文本是: "小明硕士毕业于中国科学院“
中国 0.4472135955
北京 0.0
大厦 0.0
天安门 0.0
小明 0.4472135955
来到 0.0
杭研 0.0
毕业 0.4472135955
清华大学 0.0
硕士 0.4472135955
科学院 0.4472135955
网易 0.0
-------这里输出第 3 类文本的词语tf-idf权重------ #该类相应的原文本是: "我爱北京天安门"
中国 0.0
北京 0.61913029649
大厦 0.0
天安门 0.78528827571
小明 0.0
来到 0.0
杭研 0.0
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.0

  注:这里随便举了几个文本,所以tf-idf也没什么实际价值,旨在说明scikit-learn包关于tf-idf计算API的调用

python scikit-learn计算tf-idf词语权重的更多相关文章

  1. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  2. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  3. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  4. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

  5. tf–idf算法解释及其python代码

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  6. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  7. python使用scikit-learn计算TF-IDF

    1 Scikit-learn下载安装 1.1 简介 1.2 安装软件 2 TF-IDF基础知识 2.1 TF-IDF概念 2.2 举例说明计算 3 Scikit-Learn中计算TF-IDF 3.1 ...

  8. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  9. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

随机推荐

  1. Vue学习笔记——Vue-router

    转载:https://blog.csdn.net/guanxiaoyu002/article/details/81116616 第1节:Vue-router入门 .解读router/index.js文 ...

  2. SpringCloud学习笔记(九):SpringCloud Config 分布式配置中心

    概述 分布式系统面临的-配置问题 微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的粒度相对较小,因此系统中会出现大量的服务.由于每个服务都需要必要的配置信息才能运行,所以一套集中式的.动 ...

  3. python环境变量配置 - CSDN博客

    一.下载: 1.官网下载python3.0系列(https://www.python.org/) 2.下载后图标为: 二.安装: Window下: 1.安装路径: 默认安装路径:C:\python35 ...

  4. VIM 代码自动补全, YouCompleteMe安装及配置

    效果 下载 使用Vundle安装 YCM 1. 安装Vundle window用户安装vundle参考这里:Windows下 vundle的安装和使用 2.

  5. where与having区别

    解释一. 聚合函数是比较where.having 的关键. 开门见山.where.聚合函数.having 在from后面的执行顺序: where>聚合函数(sum,min,max,avg,cou ...

  6. 使用Image作为BackgroundColor 使用

    https://www.hackingwithswift.com/example-code/uicolor/how-to-use-an-image-for-your-background-color- ...

  7. eclipse 克隆 https 地址的 Git 仓库报错:cannot open git-upload-pack

    解决方法:Window >Preferences >Team>Git>User settings点击Add Entry设置key:http.sslVerify value:fa ...

  8. Nand Flash 控制器中的硬件 ECC 介绍

    ECC 产生方法 ECC 是用于对存储器之间传送数据正确进行校验的一种算法,分硬件 ECC 和软件 ECC 算法两种,在 S3C2410 的 Nand Flash 控制器中实现了由硬件电路(ECC 生 ...

  9. 【笔记篇】C#笔记3

    笔记目录:http://blog.csdn.net/enzymii/article/details/77169928 C#的接口有点意思,我们说过可以用来多重继承.. using System; na ...

  10. 04.Mybatis输出映射之ResultMap

    当实体类中的字段名与数据库中的字段名不一致时需要手动设置映射关系 在Mapper.xml中定义 <!-- resultMap最终还是要将结果映射到pojo上,type就是指定映射到哪一个pojo ...