pytorch之 RNN classifier
###仅为自己练习,没有其他用途
1 import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 64
TIME_STEP = 28 # rnn time step / image height
INPUT_SIZE = 28 # rnn input size / image width
LR = 0.01 # learning rate
DOWNLOAD_MNIST = True # set to True if haven't download the data # Mnist digital dataset
train_data = dsets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST, # download it if you don't have it
) # # plot one example
# print(train_data.train_data.size()) # (60000, 28, 28)
# print(train_data.train_labels.size()) # (60000)
# plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
# plt.title('%i' % train_data.train_labels[0])
# plt.show() # Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # convert test data into Variable, pick 2000 samples to speed up testing
test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy()[:2000] # covert to numpy array class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__() self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns
input_size=INPUT_SIZE,
hidden_size=64, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
) self.out = nn.Linear(64, 10) def forward(self, x):
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size)
# h_c shape (n_layers, batch, hidden_size)
r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state # choose r_out at the last time step
out = self.out(r_out[:, -1, :])
return out rnn = RNN()
print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data
b_x = b_x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size) output = rnn(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients if step % 50 == 0:
test_output = rnn(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy) # print 10 predictions from test data
test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
pytorch之 RNN classifier的更多相关文章
- pytorch实现rnn并且对mnist进行分类
1.RNN简介 rnn,相比很多人都已经听腻,但是真正用代码操练起来,其中还是有很多细节值得琢磨. 虽然大家都在说,我还是要强调一次,rnn实际上是处理的是序列问题,与之形成对比的是cnn,cnn不能 ...
- pytorch之 RNN 参数解释
上次通过pytorch实现了RNN模型,简易的完成了使用RNN完成mnist的手写数字识别,但是里面的参数有点不了解,所以对问题进行总结归纳来解决. 总述:第一次看到这个函数时,脑袋有点懵,总结了下总 ...
- 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...
- pytorch之 RNN regression
关于RNN模型参数的解释,可以参看RNN参数解释 1 import torch from torch import nn import numpy as np import matplotlib.py ...
- pytorch中如何处理RNN输入变长序列padding
一.为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练 ...
- Pytorch基础——使用 RNN 生成简单序列
一.介绍 内容 使用 RNN 进行序列预测 今天我们就从一个基本的使用 RNN 生成简单序列的例子中,来窥探神经网络生成符号序列的秘密. 我们首先让神经网络模型学习形如 0^n 1^n 形式的上下文无 ...
- RNN,写起来真的烦
曾经,为了处理一些序列相关的数据,我稍微了解了一点递归网络 (RNN) 的东西.由于当时只会 tensorflow,就从官网上找了一些 tensorflow 相关的 demo,中间陆陆续续折腾了两个多 ...
- [转] Torch中实现mini-batch RNN
工作中需要把一个SGD的LSTM改造成mini-batch的LSTM, 两篇比较有用的博文,转载mark https://zhuanlan.zhihu.com/p/34418001 http://ww ...
- RNN网络【转】
本文转载自:https://zhuanlan.zhihu.com/p/29212896 简单的Char RNN生成文本 Sherlock I want to create some new thing ...
随机推荐
- js 极简获取表单 元素 !
let s =[]; $.each($('#formSearch input'),(m,n)=>{s.push(n)}); //示例获取表单所有 input 下滑线分割的 name 集合.set ...
- Django框架初体验
前言 从今天开始学习测试开发知识,并会把每一次学习的过程和成果记录到博客,由于我也没怎么接触过python相关的开发框架,所以前期应该是艰难的,但是我相信努力就会有收获,如果你和我一样是个小白,那我们 ...
- 修理牛棚 贪心 USACO
今天开始终于可以刷USACO的题啦 准备每一道都发一个题解 1010: 1.3.2 Barn Repair 修理牛棚 时间限制: 1 Sec 内存限制: 128 MB提交: 9 解决: 7[提交] ...
- 【ARM】---STM32位带操作总结---浅显易懂
正在准备做毕业设计,配置LED_Config()的时候,又看到了位带操作的宏定义,我又嘀咕了,什么是位带操作,一年前在使用位带操作的时候,就查阅过好多资料,Core-M3也看过,但是对于博主这种“低能 ...
- sin 与 cos 的用法
这两个函数使用过程中要,如 sin(x) , x 在这里表示的是弧度,至于弧度要如何计算呢 ? pi / 180 = 弧度 / 角度 内部的参数可以整数或者浮点数,以前面做过的一道题而言,大量的调用函 ...
- 洛谷p1137 模拟退火
题目链接:https://www.luogu.org/problem/P1337 以x为原点,将力分解成横纵方向的力,每次退火时单独对答案的横纵坐标进行判断是否更新答案 #include<ios ...
- flask模板 flask-bootstrap
1.模板 a.block块中继承前面block块的内容,需要添加{{super()}} b.macro 宏: 作用:在模板中定义函数(定义函数->注意添加()->可以使用from 模板 ...
- __new__ 方法
1.构造方法 实例化过程:构造->初始化 构成方法必须要有返回值,返回给初始化方法的self class A: def __init__(self): self.x = 1 print('ini ...
- CF6B President's Office 题解
看到大致思路一致的题解,决定发一篇运用STL不用dfs的题解 好久不发题解,心里不爽 思路: 1.输入的同时找到总统桌子的位置,用vector<pair <int,int> ...
- Vim学习之路1
与之前的随笔一样,这个也是记录Vim常用命令以供日后查找所用.对于Vim,简介而又功能强大,学习之后代码书写相当愉快. 1. 保存并退出 :wq 2. 进入标准插入模式退出命令模式 i 3. 退出标准 ...