题目

题目大意

给你一个数列,让你找到一个最长的连续子序列,满足在添加了至多KKK个数之后,能够变成一条公差为DDD的等差数列。


思考历程

一眼看上去似乎是一道神题……

没有怎么花时间思考,毕竟时间都砸到T1和T2上了。


正解

仔细推一下就会发现这种等差数列[j,i][j,i][j,i]有三个简单的条件:

  1. 所有数模ddd的余数相同
  2. 没有重复的数(d=0d=0d=0的时候除外)
  3. max(j,i)−min(j,i)d+1≤i−j+1+k\frac{max(j,i)-min(j,i)}{d}+1\leq i-j+1+kdmax(j,i)−min(j,i)​+1≤i−j+1+k

前面两个都能很快地预处理。

现在我们枚举一个右边界rrr,前面两个条件可以使我们得知最远的左边界LLL。

我们把第三个条件的式子乱搞一下:max(l,r)−min(l,r)−(r−l)d≤kdmax(l,r)-min(l,r)-(r-l)d\leq kdmax(l,r)−min(l,r)−(r−l)d≤kd

考虑一下能不能维护左边的式子。最重要的是维护最小值和最大值。

随便想想就可以知道,左边界lll在区间[L,r][L,r][L,r]中,最小值的取值是一段一段的(最大值也一样)。

或许能够用这条性质来维护。

接着就可以想到单调队列。对于最小值和最大值分别维护一条单调队列。

设单调队列上某个位置的值是xxx,上一个位置是yyy,那么区间[y+1,x][y+1,x][y+1,x]中的值为a[x]a[x]a[x]。

于是我们可以在线段树上区间修改。

在维护单调队列的过程中,最小(大)值会有些变化。这也可以直接在线段树上改。

至于−(r−l)d-(r-l)d−(r−l)d,这个是很容易维护的,每次直接将区间[1,r−1][1,r-1][1,r−1]减ddd就可以了。

询问的时候就是寻找线段树上最左边的小于kdkdkd的值。这个可以维护最小值,在线段树上二分就可以维护了。


代码

using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#define N 200010
#define INF 1000000000000000000
int n;
long long K,D;
int a[N];
bool bz[N];
map<int,int> last;
int fr[N];
int q1[N],q2[N];//min max
int h1,t1,h2,t2;
long long t[N*4],lazy[N*4];
inline void pushdown(int k){
t[k<<1]+=lazy[k],t[k<<1|1]+=lazy[k];
lazy[k<<1]+=lazy[k],lazy[k<<1|1]+=lazy[k];
lazy[k]=0;
}
void build(int k,int l,int r){
t[k]=INF;
if (l==r)
return;
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
}
void add(int k,int l,int r,int st,int en,long long c){
if (st<=l && r<=en){
t[k]+=c;
lazy[k]+=c;
return;
}
pushdown(k);
int mid=l+r>>1;
if (st<=mid)
add(k<<1,l,mid,st,en,c);
if (mid<en)
add(k<<1|1,mid+1,r,st,en,c);
t[k]=min(t[k<<1],t[k<<1|1]);
}
void change0(int k,int l,int r,int x){
if (l==r){
t[k]=0;
return;
}
pushdown(k);
int mid=l+r>>1;
if (x<=mid)
change0(k<<1,l,mid,x);
else
change0(k<<1|1,mid+1,r,x);
t[k]=min(t[k<<1],t[k<<1|1]);
}
int query(int k,int l,int r,int en){
if (t[k]>K*D)
return 0;
if (l==r)
return l;
pushdown(k);
int mid=l+r>>1,res=0;
res=query(k<<1,l,mid,en);
if (!res && mid<en)
res=query(k<<1|1,mid+1,r,en);
return res;
}
int main(){
scanf("%d%lld%lld",&n,&K,&D);
for (int i=1;i<=n;++i)
scanf("%d",&a[i]);
if (D==0){
int ansl=1,len=1;
for (int i=1,j=0;i<=n;++i)
if (a[i]!=a[i-1]){
if (i-j>len)
len=i-j,ansl=j;
else if (i-j==len)
ansl=j;
}
printf("%d %d\n",ansl,ansl+len-1);
return 0;
}
for (int i=1;i<=n;++i)
if (i==1 || (a[i]%D+D)%D!=(a[i-1]%D+D)%D)
bz[i]=1;
for (int i=1;i<=n;++i){
fr[i]=last[a[i]];
last[a[i]]=i;
}
build(1,1,n);
h1=h2=1,t1=t2=0;
int ansl=1,len=1;
for (int i=1,st=1;i<=n;++i){
if (bz[i]){
h1=h2=1,t1=t2=0;
if (st<=i-1)
add(1,1,n,st,i-1,INF);
st=i;
}
else if (st<=fr[i]){
add(1,1,n,st,fr[i],INF);
st=fr[i]+1;
}
while (h1<=t1 && q1[h1]<st)
h1++;
while (h2<=t2 && q2[h2]<st)
h2++;
while (h1<=t1 && a[q1[t1]]>=a[i]){
add(1,1,n,q1[t1-1]+1,q1[t1],+a[q1[t1]]-a[i]);
t1--;
}
while (h2<=t2 && a[q2[t2]]<=a[i]){
add(1,1,n,q2[t2-1]+1,q2[t2],-a[q2[t2]]+a[i]);
t2--;
}
q1[++t1]=q2[++t2]=i;
if (st<=i-1)
add(1,1,n,st,i-1,-D);
change0(1,1,n,i);
int l=query(1,1,n,i);
if (i-l+1>len)
len=i-l+1,ansl=l;
else if (i-l+1==len && l<ansl)
ansl=l;
}
printf("%d %d\n",ansl,ansl+len-1);
return 0;
}

总结

单调队列可以干的东西,可不仅仅是DP啊……

[JZOJ4665] 【GDOI2017模拟7.21】数列的更多相关文章

  1. 【JZOJ4793】【GDOI2017模拟9.21】妮厨的愤怒

    题目描述 栋栋和标标都是厨力++的妮厨.俗话说"一机房不容二厨",他们两个都加入了某OI( )交流♂( )群,在钦定老婆的时候出现了偏差,于是闹得不可开交.可是栋栋是群内的长者,斗 ...

  2. jzoj4915. 【GDOI2017模拟12.9】最长不下降子序列 (数列)

    题面 题解 调了好几个小时啊--话说我考试的时候脑子里到底在想啥-- 首先,这个数列肯定是有循环节的,而且循环节的长度\(T\)不会超过\(D\) 那么就可以把数列分成三份,\(L+S+R\),其中\ ...

  3. 【JZOJ5086】【GDOI2017第四轮模拟day1】数列 折半搜索

    题面 有一个长度为n 的排列,现在有一些位置的数已经模糊不清了,你只知道这个排列的逆序对个数是K,你能计算出总共有多少可能的排列吗? 对于100% 的数据,n <=10^3,K<=10^9 ...

  4. jzoj4918. 【GDOI2017模拟12.9】最近公共祖先 (树链剖分+线段树)

    题面 题解 首先,点变黑的过程是不可逆的,黑化了就再也洗不白了 其次,对于\(v\)的祖先\(rt\),\(rt\)能用来更新答案当且仅当\(sz_{rt}>sz_{x}\),其中\(sz\)表 ...

  5. jzoj4916. 【GDOI2017模拟12.9】完全背包问题 (背包+最短路)

    题面 题解 考场上蠢了--这么简单的东西都想不到-- 首先排序加去重. 先来考虑一下,形如 \[a_1x_1+a_2x_2+...a_nx_n=w,a_1<a_2<...<a_n,x ...

  6. NOIP模拟赛 某种数列问题

    众所周知,chenzeyu97有无数的妹子(阿掉!>_<),而且他还有很多恶趣味的问题,继上次纠结于一排妹子的排法以后,今天他有非(chi)常(bao)认(cheng)真(zhe)去研究一 ...

  7. [考试反思]0814NOIP模拟测试21

    前两名是外校的240.220.kx和skyh拿到了190的[暴力打满]的好成绩. 我第5是170分,然而160分就是第19了. 在前一晚上刚刚爆炸完毕后,心态格外平稳. 想想前一天晚上的挣扎: 啊啊啊 ...

  8. [JZOJ4633] 【GDOI2017模拟7.15】萌萌哒

    题目 描述 题目大意 给你一个数列,接下来有许多个操作,使得区间[l1,r1][l_1,r_1][l1​,r1​]和[l2,r2][l_2,r_2][l2​,r2​]对应的位置染上同样的颜色(使得它们 ...

  9. 2019.8.14 NOIP模拟测试21 反思总结

    模拟测试20的还没改完先咕着 各种细节问题=错失190pts T1大约三分钟搞出了式子,迅速码完,T2写了一半的时候怕最后被卡评测滚去交了,然后右端点没有初始化为n…但是这样还有80pts,而我后来还 ...

随机推荐

  1. spring-boot 集成ehcache报错:org.springframework.expression.spel.SpelEvaluationException: EL1008E:

    错误信息:org.springframework.expression.spel.SpelEvaluationException: EL1008E: Property or field 'pageab ...

  2. cookie、session、sessionStorage和localStorage

    摘抄并整理后查 cookie 和 session 一般用来跟踪浏览器的用户身份 Session的存储方式 1. 使用cookie:保存 session id 的方式可以采用 cookie,这样在交互过 ...

  3. nginx 简单使用

    一,下载 http://nginx.org/en/download.html 这个是我下载的windows版本 二,解压后目录 三,修改配置文件 (由于80端口很可能被 SQL Server Repo ...

  4. Boost.Interprocess

    https://github.com/svebert/InterprocessMsg 好像消息队列

  5. 关于h5打包后 wag包无法安装的问题

    如果不是逻辑错误,那么有可能是下列三种情况之一, 1 wgt打包时的appid与安装包不符 2 打包wgt文件和打包安装包文件 用的不是同一个HBuilder账户 3 安装包打包时权限配置,和wgt包 ...

  6. notepad++去换行(简单、快捷)

    文本处理问题 这个方式可以快捷处理, 不用Linux命令, linux 与window之间的文件转换很烦人, 这个方法可以处理

  7. js循环给li绑定事件实现和弹出对应的索引

    原文:http://www.cnblogs.com/wuchuanlong/p/5945286.html 方法一,动态添加click事件,并添加属性 var itemli = document.get ...

  8. JUC 一 FutureTask

    java.util.concurrent public class FutureTask<V> implements RunnableFuture<V> 简介 FutureTa ...

  9. Java分页查询工具类

    public class PageList<T> { private int totalpage; //总页数 private int totalcount; //总记录数 private ...

  10. js基础用法 ,基础语法

    js用法: HTML 中的脚本必须位于 <script> 与 </script> 标签之间. 脚本可被放置在 HTML 页面的 <body> 和 <head& ...