前言

最近在做人脸比对的工作,需要用到人脸关键点检测的算法,比较成熟和通用的一种算法是 MTCNN,可以同时进行人脸框选和关键点检测,对于每张脸输出 5 个关键点,可以用来进行人脸对齐。

问题

刚开始准备对齐人脸图片用于训练人脸比对算法,是使用官方版本的 MTCNN,该版本是基于 Caffe 的 Matlab 接口的,跑起来很慢,差不多要一秒钟一张图片,处理完几万张图片一天就过去了,好在效果不错。

训练完人脸特征提取的网络以后,想要部署整个人脸比对算法,需要进行人脸检测和对齐。用于工业生产,那个版本的 MTCNN 显然不合适了。在 Github 上寻找替代算法,发现有一个从 Facenet 仓库里面拿出来打包成 Python 包的 MTCNN,直接 pip 就装上了,但是,它也很慢,虽然用了 TensorFlow, 没用上 GPU,检测一张 1080P 的图片要 700ms,太慢了。

想法

正好这几天在学习 TensorRT 相关知识,已经成功将人脸特征提取网络转成 onnx 格式,然后用 TensorRT 的 Python 接口部署好了,单张图片耗时从 15ms 减少到 3ms,非常理想的结果!理所当然,想着把 MTCNN 部署在 TensorRT 平台上面。

MTCNN 的 Caffe 模型直接转成 TensorRT 会有问题,主要是 PReLU 不被支持,解决方法是将该操作重写,但是时间不允许,目前只学会了如何调用能够完整转化的模型,还需要继续深入了解模型转化的细节。

解决方案

非常感谢 @jkjung-avt的工作,在他的博客中详细介绍了如何使用 Cython 和 TensorRT 优化 MTCNN。在他的 Github 中,给出了 TensorRT 版本的 MTCNN,并且是使用 Python 接口写的,太符合我的需求了!

下面回顾一下是如何使用该代码完成工作的。

1.将整个项目下载下来,首先在项目根目录下 make ,编译 Cython 模块,生成 pytrt.cpython-36m-x86_64-linux-gnu.so

2.在 mtcnn 文件夹下 make,生成 create_engines,再运行 ./create_engines,将 PNet, RNetONet 的模型文件分别转化为 engine 文件,后面可以直接使用这三个文件进行推理。

3.下面就是使用该模型,说实话,作者的代码还没来得及看,代码量较大,需要认真学习。通过作者的博客,还发现了 Jetson Nano 这样的好东西,便宜的深度学习方案,有时间可以玩一下。下面这个文件就是调用生成的 engine 文件提供推理服务了。

'''
mtcnn.py
'''
import cv2
import numpy as np import pytrt PIXEL_MEAN = 127.5
PIXEL_SCALE = 0.0078125 def convert_to_1x1(boxes):
"""Convert detection boxes to 1:1 sizes # Arguments
boxes: numpy array, shape (n,5), dtype=float32 # Returns
boxes_1x1
"""
boxes_1x1 = boxes.copy()
hh = boxes[:, 3] - boxes[:, 1] + 1.
ww = boxes[:, 2] - boxes[:, 0] + 1.
mm = np.maximum(hh, ww)
boxes_1x1[:, 0] = boxes[:, 0] + ww * 0.5 - mm * 0.5
boxes_1x1[:, 1] = boxes[:, 1] + hh * 0.5 - mm * 0.5
boxes_1x1[:, 2] = boxes_1x1[:, 0] + mm - 1.
boxes_1x1[:, 3] = boxes_1x1[:, 1] + mm - 1.
boxes_1x1[:, 0:4] = np.fix(boxes_1x1[:, 0:4])
return boxes_1x1 def crop_img_with_padding(img, box, padding=0):
"""Crop a box from image, with out-of-boundary pixels padded # Arguments
img: img as a numpy array, shape (H, W, 3)
box: numpy array, shape (5,) or (4,)
padding: integer value for padded pixels # Returns
cropped_im: cropped image as a numpy array, shape (H, W, 3)
"""
img_h, img_w, _ = img.shape
if box.shape[0] == 5:
cx1, cy1, cx2, cy2, _ = box.astype(int)
elif box.shape[0] == 4:
cx1, cy1, cx2, cy2 = box.astype(int)
else:
raise ValueError
cw = cx2 - cx1 + 1
ch = cy2 - cy1 + 1
cropped_im = np.zeros((ch, cw, 3), dtype=np.uint8) + padding
ex1 = max(0, -cx1) # ex/ey's are the destination coordinates
ey1 = max(0, -cy1)
ex2 = min(cw, img_w - cx1)
ey2 = min(ch, img_h - cy1)
fx1 = max(cx1, 0) # fx/fy's are the source coordinates
fy1 = max(cy1, 0)
fx2 = min(cx2+1, img_w)
fy2 = min(cy2+1, img_h)
cropped_im[ey1:ey2, ex1:ex2, :] = img[fy1:fy2, fx1:fx2, :]
return cropped_im def nms(boxes, threshold, type='Union'):
"""Non-Maximum Supression # Arguments
boxes: numpy array [:, 0:5] of [x1, y1, x2, y2, score]'s
threshold: confidence/score threshold, e.g. 0.5
type: 'Union' or 'Min' # Returns
A list of indices indicating the result of NMS
"""
if boxes.shape[0] == 0:
return []
xx1, yy1, xx2, yy2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
areas = np.multiply(xx2-xx1+1, yy2-yy1+1)
sorted_idx = boxes[:, 4].argsort() pick = []
while len(sorted_idx) > 0:
# In each loop, pick the last box (highest score) and remove
# all other boxes with IoU over threshold
tx1 = np.maximum(xx1[sorted_idx[-1]], xx1[sorted_idx[0:-1]])
ty1 = np.maximum(yy1[sorted_idx[-1]], yy1[sorted_idx[0:-1]])
tx2 = np.minimum(xx2[sorted_idx[-1]], xx2[sorted_idx[0:-1]])
ty2 = np.minimum(yy2[sorted_idx[-1]], yy2[sorted_idx[0:-1]])
tw = np.maximum(0.0, tx2 - tx1 + 1)
th = np.maximum(0.0, ty2 - ty1 + 1)
inter = tw * th
if type == 'Min':
iou = inter / \
np.minimum(areas[sorted_idx[-1]], areas[sorted_idx[0:-1]])
else:
iou = inter / \
(areas[sorted_idx[-1]] + areas[sorted_idx[0:-1]] - inter)
pick.append(sorted_idx[-1])
sorted_idx = sorted_idx[np.where(iou <= threshold)[0]]
return pick def generate_pnet_bboxes(conf, reg, scale, t):
"""
# Arguments
conf: softmax score (face or not) of each grid
reg: regression values of x1, y1, x2, y2 coordinates.
The values are normalized to grid width (12) and
height (12).
scale: scale-down factor with respect to original image
t: confidence threshold # Returns
A numpy array of bounding box coordinates and the
cooresponding scores: [[x1, y1, x2, y2, score], ...] # Notes
Top left corner coordinates of each grid is (x*2, y*2),
or (x*2/scale, y*2/scale) in the original image.
Bottom right corner coordinates is (x*2+12-1, y*2+12-1),
or ((x*2+12-1)/scale, (y*2+12-1)/scale) in the original
image.
"""
conf = conf.T # swap H and W dimensions
dx1 = reg[0, :, :].T
dy1 = reg[1, :, :].T
dx2 = reg[2, :, :].T
dy2 = reg[3, :, :].T
(x, y) = np.where(conf >= t)
if len(x) == 0:
return np.zeros((0, 5), np.float32) score = np.array(conf[x, y]).reshape(-1, 1) # Nx1
reg = np.array([dx1[x, y], dy1[x, y],
dx2[x, y], dy2[x, y]]).T * 12. # Nx4
topleft = np.array([x, y], dtype=np.float32).T * 2. # Nx2
bottomright = topleft + np.array([11., 11.], dtype=np.float32) # Nx2
boxes = (np.concatenate((topleft, bottomright), axis=1) + reg) / scale
boxes = np.concatenate((boxes, score), axis=1) # Nx5
# filter bboxes which are too small
#boxes = boxes[boxes[:, 2]-boxes[:, 0] >= 12., :]
#boxes = boxes[boxes[:, 3]-boxes[:, 1] >= 12., :]
return boxes def generate_rnet_bboxes(conf, reg, pboxes, t):
"""
# Arguments
conf: softmax score (face or not) of each box
reg: regression values of x1, y1, x2, y2 coordinates.
The values are normalized to box width and height.
pboxes: input boxes to RNet
t: confidence threshold # Returns
boxes: a numpy array of box coordinates and cooresponding
scores: [[x1, y1, x2, y2, score], ...]
"""
boxes = pboxes.copy() # make a copy
assert boxes.shape[0] == conf.shape[0]
boxes[:, 4] = conf # update 'score' of all boxes
boxes = boxes[conf >= t, :]
reg = reg[conf >= t, :]
ww = (boxes[:, 2]-boxes[:, 0]+1).reshape(-1, 1) # x2 - x1 + 1
hh = (boxes[:, 3]-boxes[:, 1]+1).reshape(-1, 1) # y2 - y1 + 1
boxes[:, 0:4] += np.concatenate((ww, hh, ww, hh), axis=1) * reg
return boxes def generate_onet_outputs(conf, reg_boxes, reg_marks, rboxes, t):
"""
# Arguments
conf: softmax score (face or not) of each box
reg_boxes: regression values of x1, y1, x2, y2
The values are normalized to box width and height.
reg_marks: regression values of the 5 facial landmark points
rboxes: input boxes to ONet (already converted to 2x1)
t: confidence threshold # Returns
boxes: a numpy array of box coordinates and cooresponding
scores: [[x1, y1, x2, y2,... , score], ...]
landmarks: a numpy array of facial landmark coordinates:
[[x1, x2, ..., x5, y1, y2, ..., y5], ...]
"""
boxes = rboxes.copy() # make a copy
assert boxes.shape[0] == conf.shape[0]
boxes[:, 4] = conf
boxes = boxes[conf >= t, :]
reg_boxes = reg_boxes[conf >= t, :]
reg_marks = reg_marks[conf >= t, :]
xx = boxes[:, 0].reshape(-1, 1)
yy = boxes[:, 1].reshape(-1, 1)
ww = (boxes[:, 2]-boxes[:, 0]).reshape(-1, 1)
hh = (boxes[:, 3]-boxes[:, 1]).reshape(-1, 1)
marks = np.concatenate((xx, xx, xx, xx, xx, yy, yy, yy, yy, yy), axis=1)
marks += np.concatenate((ww, ww, ww, ww, ww, hh, hh,
hh, hh, hh), axis=1) * reg_marks
ww = ww + 1
hh = hh + 1
boxes[:, 0:4] += np.concatenate((ww, hh, ww, hh), axis=1) * reg_boxes
return boxes, marks def clip_dets(dets, img_w, img_h):
"""Round and clip detection (x1, y1, ...) values. Note we exclude the last value of 'dets' in computation since
it is 'conf'.
"""
dets[:, 0:-1] = np.fix(dets[:, 0:-1])
evens = np.arange(0, dets.shape[1]-1, 2)
odds = np.arange(1, dets.shape[1]-1, 2)
dets[:, evens] = np.clip(dets[:, evens], 0., float(img_w-1))
dets[:, odds] = np.clip(dets[:, odds], 0., float(img_h-1))
return dets class TrtPNet(object):
"""TrtPNet Refer to mtcnn/det1_relu.prototxt for calculation of input/output
dimmensions of TrtPNet, as well as input H offsets (for all scales).
The output H offsets are merely input offsets divided by stride (2).
"""
input_h_offsets = (0, 216, 370, 478, 556, 610, 648, 676, 696)
output_h_offsets = (0, 108, 185, 239, 278, 305, 324, 338, 348)
max_n_scales = 9 def __init__(self, engine):
"""__init__ # Arguments
engine: path to the TensorRT engine file
"""
self.trtnet = pytrt.PyTrtMtcnn(engine,
(3, 710, 384),
(2, 350, 187),
(4, 350, 187))
self.trtnet.set_batchsize(1) def detect(self, img, minsize=40, factor=0.709, threshold=0.7):
"""Detect faces using PNet # Arguments
img: input image as a RGB numpy array
threshold: confidence threshold # Returns
A numpy array of bounding box coordinates and the
cooresponding scores: [[x1, y1, x2, y2, score], ...]
"""
if minsize < 40:
raise ValueError("TrtPNet is currently designed with "
"'minsize' >= 40")
if factor > 0.709:
raise ValueError("TrtPNet is currently designed with "
"'factor' <= 0.709")
m = 12.0 / minsize
img_h, img_w, _ = img.shape
minl = min(img_h, img_w) * m # create scale pyramid
scales = []
while minl >= 12:
scales.append(m)
m *= factor
minl *= factor
if len(scales) > self.max_n_scales: # probably won't happen...
raise ValueError('Too many scales, try increasing minsize '
'or decreasing factor.') total_boxes = np.zeros((0, 5), dtype=np.float32)
img = (img.astype(np.float32) - PIXEL_MEAN) * PIXEL_SCALE # stack all scales of the input image vertically into 1 big
# image, and only do inferencing once
im_data = np.zeros((1, 3, 710, 384), dtype=np.float32)
for i, scale in enumerate(scales):
h_offset = self.input_h_offsets[i]
h = int(img_h * scale)
w = int(img_w * scale)
im_data[0, :, h_offset:(h_offset+h), :w] = \
cv2.resize(img, (w, h)).transpose((2, 0, 1)) out = self.trtnet.forward(im_data) # extract outputs of each scale from the big output blob
for i, scale in enumerate(scales):
h_offset = self.output_h_offsets[i]
h = (int(img_h * scale) - 12) // 2 + 1
w = (int(img_w * scale) - 12) // 2 + 1
pp = out['prob1'][0, 1, h_offset:(h_offset+h), :w]
cc = out['boxes'][0, :, h_offset:(h_offset+h), :w]
boxes = generate_pnet_bboxes(pp, cc, scale, threshold)
if boxes.shape[0] > 0:
pick = nms(boxes, 0.5, 'Union')
if len(pick) > 0:
boxes = boxes[pick, :]
if boxes.shape[0] > 0:
total_boxes = np.concatenate((total_boxes, boxes), axis=0) if total_boxes.shape[0] == 0:
return total_boxes
pick = nms(total_boxes, 0.7, 'Union')
dets = clip_dets(total_boxes[pick, :], img_w, img_h)
return dets def destroy(self):
self.trtnet.destroy()
self.trtnet = None class TrtRNet(object):
"""TrtRNet # Arguments
engine: path to the TensorRT engine (det2) file
""" def __init__(self, engine):
self.trtnet = pytrt.PyTrtMtcnn(engine,
(3, 24, 24),
(2, 1, 1),
(4, 1, 1)) def detect(self, img, boxes, max_batch=256, threshold=0.7):
"""Detect faces using RNet # Arguments
img: input image as a RGB numpy array
boxes: detection results by PNet, a numpy array [:, 0:5]
of [x1, y1, x2, y2, score]'s
max_batch: only process these many top boxes from PNet
threshold: confidence threshold # Returns
A numpy array of bounding box coordinates and the
cooresponding scores: [[x1, y1, x2, y2, score], ...]
"""
if max_batch > 256:
raise ValueError('Bad max_batch: %d' % max_batch)
boxes = boxes[:max_batch] # assuming boxes are sorted by score
if boxes.shape[0] == 0:
return boxes
img_h, img_w, _ = img.shape
boxes = convert_to_1x1(boxes)
crops = np.zeros((boxes.shape[0], 24, 24, 3), dtype=np.uint8)
for i, det in enumerate(boxes):
cropped_im = crop_img_with_padding(img, det)
# NOTE: H and W dimensions need to be transposed for RNet!
crops[i, ...] = cv2.transpose(cv2.resize(cropped_im, (24, 24)))
crops = crops.transpose((0, 3, 1, 2)) # NHWC -> NCHW
crops = (crops.astype(np.float32) - PIXEL_MEAN) * PIXEL_SCALE self.trtnet.set_batchsize(crops.shape[0])
out = self.trtnet.forward(crops) pp = out['prob1'][:, 1, 0, 0]
cc = out['boxes'][:, :, 0, 0]
boxes = generate_rnet_bboxes(pp, cc, boxes, threshold)
if boxes.shape[0] == 0:
return boxes
pick = nms(boxes, 0.7, 'Union')
dets = clip_dets(boxes[pick, :], img_w, img_h)
return dets def destroy(self):
self.trtnet.destroy()
self.trtnet = None class TrtONet(object):
"""TrtONet # Arguments
engine: path to the TensorRT engine (det3) file
""" def __init__(self, engine):
self.trtnet = pytrt.PyTrtMtcnn(engine,
(3, 48, 48),
(2, 1, 1),
(4, 1, 1),
(10, 1, 1)) def detect(self, img, boxes, max_batch=64, threshold=0.7):
"""Detect faces using ONet # Arguments
img: input image as a RGB numpy array
boxes: detection results by RNet, a numpy array [:, 0:5]
of [x1, y1, x2, y2, score]'s
max_batch: only process these many top boxes from RNet
threshold: confidence threshold # Returns
dets: boxes and conf scores
landmarks
"""
if max_batch > 64:
raise ValueError('Bad max_batch: %d' % max_batch)
if boxes.shape[0] == 0:
return (np.zeros((0, 5), dtype=np.float32),
np.zeros((0, 10), dtype=np.float32))
boxes = boxes[:max_batch] # assuming boxes are sorted by score
img_h, img_w, _ = img.shape
boxes = convert_to_1x1(boxes)
crops = np.zeros((boxes.shape[0], 48, 48, 3), dtype=np.uint8)
for i, det in enumerate(boxes):
cropped_im = crop_img_with_padding(img, det)
# NOTE: H and W dimensions need to be transposed for RNet!
crops[i, ...] = cv2.transpose(cv2.resize(cropped_im, (48, 48)))
crops = crops.transpose((0, 3, 1, 2)) # NHWC -> NCHW
crops = (crops.astype(np.float32) - PIXEL_MEAN) * PIXEL_SCALE self.trtnet.set_batchsize(crops.shape[0])
out = self.trtnet.forward(crops) pp = out['prob1'][:, 1, 0, 0]
cc = out['boxes'][:, :, 0, 0]
mm = out['landmarks'][:, :, 0, 0]
boxes, landmarks = generate_onet_outputs(pp, cc, mm, boxes, threshold)
pick = nms(boxes, 0.7, 'Min')
return (clip_dets(boxes[pick, :], img_w, img_h),
np.fix(landmarks[pick, :])) def destroy(self):
self.trtnet.destroy()
self.trtnet = None class TrtMtcnn(object):
"""TrtMtcnn""" def __init__(self, engine_files):
self.pnet = TrtPNet(engine_files[0])
self.rnet = TrtRNet(engine_files[1])
self.onet = TrtONet(engine_files[2]) def __del__(self):
self.onet.destroy()
self.rnet.destroy()
self.pnet.destroy() def _detect_1280x720(self, img, minsize):
"""_detec_1280x720() Assuming 'img' has been resized to less than 1280x720.
"""
# MTCNN model was trained with 'MATLAB' image so its channel
# order is RGB instead of BGR.
img = img[:, :, ::-1] # BGR -> RGB
dets = self.pnet.detect(img, minsize=minsize)
dets = self.rnet.detect(img, dets)
dets, landmarks = self.onet.detect(img, dets)
return dets, landmarks def detect(self, img, minsize=40):
"""detect() This function handles rescaling of the input image if it's
larger than 1280x720.
"""
if img is None:
raise ValueError
img_h, img_w, _ = img.shape
scale = min(720. / img_h, 1280. / img_w)
if scale < 1.0:
new_h = int(np.ceil(img_h * scale))
new_w = int(np.ceil(img_w * scale))
img = cv2.resize(img, (new_w, new_h))
minsize = max(int(np.ceil(minsize * scale)), 40)
dets, landmarks = self._detect_1280x720(img, minsize)
if scale < 1.0:
dets[:, :-1] = np.fix(dets[:, :-1] / scale)
landmarks = np.fix(landmarks / scale)
return dets, landmarks

4.然后在需要人脸检测的地方

from mtcnn import TrtMtcnn

mtcnn = TrtMtcnn(mtcnn_engine_file) # 只初始化一次
dets, landmarks = mtcnn.detect(img, minsize=40)

这样就可以进行人脸框选和关键点检测了。

dets 是人脸框 [[x1, y1, x2, y2,... , score], ...]

landmarks 是5个关键点的坐标 [[x1, x2, ..., x5, y1, y2, ..., y5], ...]

5.如果一张图片中有多张脸,希望选取靠近图片中心的脸,通过以下函数返回该脸的索引,原理是计算左上点和右下点和图片中心的距离,取最小的那个。

def find_central_face(img, dets):
h, w, _ = img.shape
min_distance = 1e10
min_distance_index = 0
i = 0
for det in dets:
distance = (
(det[0] - w / 2) * (det[0] - w / 2)
+ (det[1] - h / 2) * (det[1] - h / 2)
+ (det[2] - w / 2) * (det[2] - w / 2)
+ (det[3] - h / 2) * (det[3] - h / 2)
)
if distance < min_distance:
min_distance = distance
min_distance_index = i
i += 1
return min_distance_index

有了 5 个关键点,就可以做人脸对齐了

import cv2
import numpy class FaceAligner:
def __init__(self):
self.imgSize = [112, 96]
# 96*112 图中标准的5个关键的坐标
self.coord5point = [
[30.2946, 51.6963],
[65.5318, 51.6963],
[48.0252, 71.7366],
[33.5493, 92.3655],
[62.7299, 92.3655],
] # left_eye, right_eye, nose, mouth_left, mouth_right def transformation_from_points(self, points1, points2):
# 寻找点之间的变换矩阵
points1 = points1.astype(numpy.float64)
points2 = points2.astype(numpy.float64)
c1 = numpy.mean(points1, axis=0)
c2 = numpy.mean(points2, axis=0)
points1 -= c1
points2 -= c2
s1 = numpy.std(points1)
s2 = numpy.std(points2)
points1 /= s1
points2 /= s2
U, S, Vt = numpy.linalg.svd(points1.T * points2)
R = (U * Vt).T
return numpy.vstack(
[
numpy.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)),
numpy.matrix([0.0, 0.0, 1.0]),
]
) def warp_im(self, img_im, src_landmarks, dst_landmarks):
# 根据关键点进行变换
pts1 = numpy.float64(
numpy.matrix([[point[0], point[1]] for point in src_landmarks])
)
pts2 = numpy.float64(
numpy.matrix([[point[0], point[1]] for point in dst_landmarks])
)
M = self.transformation_from_points(pts1, pts2)
dst = cv2.warpAffine(img_im, M[:2], (img_im.shape[1], img_im.shape[0]))
return dst def align(self, img, face_landmarks):
dst = self.warp_im(img, face_landmarks, self.coord5point) # 原图通过关键点变换
crop_im = dst[0: self.imgSize[0], 0: self.imgSize[1]] # 在变换后的图中裁剪需要的尺寸
return crop_im

后面就是使用人脸特征提取器,分别对两张对齐后的人脸提取特征,计算欧氏距离,卡阈值判断结果了。最终加速结果:1080P 图片,只需要 20ms,完美符合需求了!

总结

这是看 TensorRT 的第三天,已经成功使用 TensorRT 对已有模型进行加速了。对 TensorRT 的工作流程比较熟悉了,但是,对于模型转化,操作转化,自定义操作还是一头雾水,必须要认真学习,尤其是 C++ 接口,看着很难,实际上跟 Python 差不多,只是语法比较啰嗦了一点而已。

熟练掌握 TensorRT,以后所有模型都可以放在上面加速,岂不美滋滋。

参考链接

1 https://github.com/kpzhang93/MTCNN_face_detection_alignment

2 https://github.com/ipazc/mtcnn

3 https://github.com/davidsandberg/facenet

4 https://jkjung-avt.github.io/tensorrt-mtcnn/

5 https://github.com/jkjung-avt/tensorrt_demos#mtcnn

使用TensorRT对人脸检测网络MTCNN进行加速的更多相关文章

  1. FDDB人脸检测数据集 生成ROC曲线

    看了好多博客,踩了很多坑,终于把FDDB数据集的ROC曲线绘制出来了.记录一下. 环境:ubuntu18.04 1.数据集准备 去FDDB官网:http://vis-www.cs.umass.edu/ ...

  2. MTCNN算法与代码理解—人脸检测和人脸对齐联合学习

    目录 写在前面 算法Pipeline详解 如何训练 损失函数 训练数据准备 多任务学习与在线困难样本挖掘 预测过程 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 主 ...

  3. 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

    在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...

  4. 基于MTCNN多任务级联卷积神经网络进行的人脸识别 世纪晟人脸检测

    神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多 ...

  5. 项目实战 - 原理讲解<-> Keras框架搭建Mtcnn人脸检测平台

    Mtcnn它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测.这三个级联的网络分别是快速生成 ...

  6. MTCNN人脸检测 附完整C++代码

    人脸检测 识别一直是图像算法领域一个主流话题. 前年 SeetaFace 开源了人脸识别引擎,一度成为热门话题. 虽然后来SeetaFace 又放出来 2.0版本,但是,我说但是... 没有训练代码, ...

  7. 人脸检测——MTCNN

    人脸检测——MTCNN .

  8. MTCNN人脸检测识别笔记

    论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 论文链接:https:// ...

  9. MTCNN 人脸检测

    demo.py import cv2 from detection.mtcnn import MTCNN # 检测图片中的人脸 def test_image(imgpath): mtcnn = MTC ...

随机推荐

  1. 01-前言&WEB标准

    人生苦短,要学就只学有用的 [前端教学-前言] 初识web开发 我们先来认识一下web前端 其实前端的工作,大体的概括就是:根据美工给的设计稿,变成web网页,使用后天的接口实现数据的渲染,要是高端一 ...

  2. 数据结构 二维数组-->稀疏数组-->二维数组

    稀疏数组基本概念: 稀疏数组应用场景: 当一个数组大部分的元素为"0",或者为同一个值的数组时,可以使用稀疏数组来保存该数组 处理方法: 1>记录数组一共有几行几列,有多少不 ...

  3. zookeeper3.4.6安装

    1.关闭防火墙 service iptables stop chkconfig iptables off 2.编辑hosts文件: vi /etc/hosts 192.168.99.6 JacK6 1 ...

  4. git---如何在远程某个分支的基础上新建分支

    问题场景 技术主管让你去再某个git分支上新建一个分支去做你的项目,那么如何在原远程分支的基础上新建自己的分支呢? 解决方法 按照以下命令敲即可 git branch newBranch //新建本地 ...

  5. Selenium(六):截图

    截图 from selenium import webdriver driver = webdriver.Chrome() # 以PNG格式,保存浏览器截图,filename为截图文件绝对路径 dri ...

  6. STM8上电默认电平不对的解决

    首先,手册上说的是对的,STM8/32上电后所有未被初始化的引脚电平全部是浮空的.但是我的程序却出现了一个奇怪的现象 void main(void){ init();//这里初始化时钟,IO ... ...

  7. Linux 常用工具iptables

    iptables简介 netfilter/iptables(简称为iptables)组成Linux平台下的包过滤防火墙,与大多数的Linux软件一样,这个包过滤防火墙是免费的,它可以代替昂贵的商业防火 ...

  8. nginx之文件配置

    nginx配置规则 nginx由受配置文件中指定的指令控制的模块组成 伪指令分为简单伪指令和块伪指令 简单的指令由名称和参数组成,这些名称和参数之间用空格分隔,并以分号(;)结尾 块指令的结构 与 简 ...

  9. 聊聊SpringBoot | 第一章:快速搭建SpringBoot第一个应用

    快速搭建SpringBoot第一个应用 1.简介 本章仅介绍如何快速搭建第一个SpringBoot应用,细节内容下一章再做讲解,如果有需要,各位可以直接到Spring官网去了解. 从 Spring B ...

  10. js原型和原型链的简单理解

    构造函数创建对象: function Person() { } var person = new Person(); person.name = 'Tian'; console.log(person. ...