A - 军队

问题描述

给定一个有 \(n\) 个队伍的人组成的序列,第 \(i\) 个队伍 \(i\) 有 \(s[i]\)个人组成,一个 \(l\) 到 \(r\)的子序列是合法的,当且仅当\(((∀i)(∀j)∧(i≠j)∧(l≤i,j≤r))→(gcd(s[i],s[j])=1)\),即对于该序列中任两个不相同的队伍,他们人数的最大公约数为 \(1\),并且要求该子序列的总人数大于等于 \(k\)。

且由于每个队伍能够审批携带的仪器是有限的,所以需要这个队伍\((r - l + 1)\)尽可能长,请求出这个队伍的最长长度,若不存在,请输出 \(0\)。

输入

第一行两个整数 \(n,k\) 分别表示队伍数量和人数下限

接下来一行 \(n\) 个整数,表示每个队伍的人数

输出

一行一个整数,表示队伍的最长长度,如果不存在一个这样的队伍,则输出 \(0\)

输入输出样例

样例输入

5 14
4 5 12 3 2

样例输出

2

数据范围

对于 \(10\%\)的数据 \(n≤10\)

对于另外 \(20\%\)的数据 \(n≤100\)

对于另外 \(20\%\)的数据 \(n≤2\times 1000\)

对于全部的数据 \(1≤n≤10^5, 1≤s[i]≤10^6, k≤ int\)。

题解

枚举左端点及右端点即可,还要加一些玄学优化。

\(n\)方过十万!

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#define int long long
#define gI gi
#define itn int
#define File(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout) using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}
return f * x;
} int n, k, a[100003], dp[100003], sum[100003]; namespace sub1
{
int gcd(int a, int b)
{
if (b == 0) return a;
return gcd(b, a % b);
}
bool pd(int l, int r)
{
for (int i = l; i <= r; i+=1)
{
for (int j = i + 1; j <= r; j+=1)
{
if (a[i] % 2 == 0 && a[j] % 2 == 0) return false;
if (gcd(a[i], a[j]) != 1) return false;
}
}
return true;
}
void getans()
{
itn ans = 0;
for (int i = 1; i <= n; i+=1)
{
for (int j = i + 1; j <= n; j+=1)
{
if (sum[j] - sum[i - 1] < k) continue;
if (pd(i, j)) ans = max(ans, j - i + 1);
}
}
printf("%lld\n", ans);
return;
}
} namespace sub2
{
int gcd(int a, int b)
{
if (b == 0) return a;
return gcd(b, a % b);
}
void getans()
{
int ans = 0;
for (int i = 1; i <= n; i+=1)
{
int Right;
for (Right = i; Right <= n; Right+=1) if (sum[Right] - sum[i] >= k) break;
bool fl = false;
for (int j = i; j <= Right && !fl; j+=1)
{
for (int k = j + 1; k <= Right && !fl; k+=1)
{
if (gcd(a[j], a[k]) != 1) fl = true;
}
}
if (fl) continue;
ans = max(ans, Right - i + 1);
for (++Right; Right <= n; Right+=1)
{
bool fl = false;
for (int j = i; j < Right && !fl; j+=1) if (gcd(a[j], a[Right]) != 1) fl = true;
if (fl) break;
ans = max(ans, Right - i + 1);
}
}
printf("%lld\n", ans);
}
} signed main()
{
File("tarmy");
n = gi(), k = gi();
for (int i = 1; i <= n; i+=1) a[i] = gi(), sum[i] = sum[i - 1] + a[i];
if (sum[n] < k) {puts("0"); return 0;}
if (n <= 100) {sub1::getans(); return 0;}
else {sub2::getans(); return 0;}
return 0;
}

B - 取石块儿

问题描述

小 \(L\) 和小 $T $进行取石块儿游戏,给定一个整数 \(n\) 表示石块儿总数,给定一个整数 \(k\) 表

示每次最多能拿走的石块儿数量,小 \(L\) 先手,每次能拿走 \(1\)~\(k\) 个石块儿,他们中总会有一

个人最后拿走 \(s\) 块儿石块儿,使得剩余石块儿数量为 \(0\),则最后一个拿走剩下石块儿的人获

胜,另外一个人失败。

小 \(T\) 非常聪明,小 \(L\) 绝顶(秃子(逃))聪明,请判断小 \(T\) 是否能取胜。

输入

第一行一个整数 \(T\) 表示数据组数,接下来 \(T\) 行每行两个整数 \(n\),\(k\) 意义为描述所给。

输出

对于每组数据,输出"\(YES\)"或者"\(NO\)"(不带引号),代表小 \(T\) 是否能够获胜。

输入输出样例

样例输入

2
2 1
10 4

样例输出

YES
YES

数据范围

题解

首先对于只有\(k\)个石块儿的情况, 很明显直接一次拿走就能获胜, 对于有\(k + 1\)块石块儿情况, 不论怎么拿, 总会产生少于\(k\)块石块儿的情况, 于是是必败的。

同样, 对于\((k + 1, k + k + 1]\)个石块儿的情况, 总能拿走一部分石块儿是的对手处于\(k + 1\)的必败情况, 归纳证明当\(n \% (k + 1) == 0\)的时候, 先手必胜, 反之后手必胜。

代码超短的……

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#define int unsigned long long
#define gI gi
#define itn int
#define File(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout) using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}
return f * x;
} int t, n, k, a, b; signed main()
{
File("tstones");
t = gi();
while (t--)
{
n = gi(), k = gi();
if (k == 1)
{
if (n & 1) puts("NO");
else puts("YES");
}
else
{
if (n % (k + 1)) puts("NO");
else puts("YES");
}
}
return 0;
}

总结

这次练习做得不是很好。

要拿的很多部分分都没有拿到。

还要继续努力啊\(QwQ\)。

NOIP做题练习(day3)的更多相关文章

  1. noip做题记录+挑战一句话题解?

    因为灵巧实在太弱辽不得不做点noip续下命QQAQQQ 2018 积木大赛/铺设道路 傻逼原题? 然后傻逼的我居然检查了半天是不是有陷阱最后花了差不多一个小时才做掉我做过的原题...真的傻逼了我:( ...

  2. NOIP做题练习(day2)

    A - Reign 题面 题解 最大子段和+\(DP\). 预处理两个数组: \(p[i]\)表示 \(i\) 之前的最大子段和. \(l[i]\)表示 \(i\) 之后的最大子段和. 最后直接输出即 ...

  3. NOIP做题练习(day1)

    A - Xenny and Alternating Tasks 题面 题解 枚举第一天是谁做,将两个答案取\(min\)即可. 代码 #include <iostream> #includ ...

  4. $NOIp$做题记录

    虽然去年做了挺多了也写了篇一句话题解了但一年过去也忘得差不多了$kk$ 所以重新来整理下$kk$ $2018(4/6$ [X]积木大赛 大概讲下$O(n)$的数学方法. 我是从分治类比来的$QwQ$. ...

  5. NOIP做题练习(day4)

    A - 同花顺 题面 题解 30分做法 爆搜即可. 60分做法 去重+贪心. 100分做法 去重+贪心后,我们要寻找一段符合条件的最长同花上升子序列 \(L\),\(n-L\) 即为所求的答案. 首先 ...

  6. NOIP做题练习(day5)

    A - 中位数图 题面 题解 先找出题意中的\(b\)所在的位置. 再以这个位置为中心,向右\(for\)一遍有多少个大于/小于该数的数 大于就\(++cs\) 小于就\(--cs\). 因为这个数是 ...

  7. NOIP初赛:完善程序做题技巧

    最近写的文章好像还很多的.那么今天我们来讨论NOIP初赛的题型--完善程序.完善程序相对是比较难的题目了.全卷100分,完善程序占了大概26分,占比非常大.如果和英语考试试卷做比较,相当于首字母填空( ...

  8. [日记&做题记录]-Noip2016提高组复赛 倒数十天

    写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...

  9. CodeM美团点评编程大赛复赛 做题感悟&题解

    [T1] [简要题意]   长度为N的括号序列,随机确定括号的方向:对于一个已确定的序列,每次消除相邻的左右括号(右左不行),消除后可以进一步合并和消除直到不能消为止.求剩下的括号的期望.\(N \l ...

随机推荐

  1. R 分析回归(一元回归)

    x <- c(,,,,,,,,,) # build X(predictor) y <- c(,,,,,,,,,) # build Y(dependent variable) mode(x) ...

  2. ArcMap 导入自定义样式Symbols

    管网的图例里有一些自定义的样式,这些在ArcMap中找不到,找到的也不合适,所以只能自己动手制作. 1. 菜单 Customize --> Style Manager 2 . 创建新的Style ...

  3. php 常用数学函数

    函数 描述 实例 输入 输出 abs() 求绝对值 $abs = abs(-4.2); //4.2 数字 绝对值数字 ceil() 进一法取整 echo ceil(9.999); // 10 浮点数 ...

  4. HW - VCN 介绍

    VCN 是个管理摄像机的平台 用来增删改查摄像机,获取摄像机视频流,获取录像 vcn会基于我们的接口做一次开发,作为相机的统一管理入口,获取相机的信息

  5. 2级搭建类203-Oracle 19c SI ASM 静默搭建(OEL7.7)

    Oracle 19c 单实例 ASM UDEV 方式在 OEL 7.7 上的安装

  6. LeetCode Subarray Product Less Than K 题解 双指针+单调性

    题意 给定一个正整数数组和K,数有多少个连续子数组满足: 数组中所有的元素的积小于K. 思路 依旧是双指针的思路 我们首先固定右指针r. 现在子数组的最右边的元素是nums[r]. 我们让这个子数组尽 ...

  7. ipa文件信息检查工具

    项目地址:https://github.com/ryjwinner/softwares/raw/master/iOS-checkIPA.jar 项目简介: 针对近期大量iOS app需要签名,但多家签 ...

  8. python 轮询,长轮询

    轮询相关 用于消息和投票等 轮询 1.采用js 定时请求. html <!DOCTYPE html> <html lang="zh-CN"> <hea ...

  9. R语言函数化学习笔记4

    条件语句和循环语句 当你说话时候用到了如果,此时条件出现了 举个条件函数的例子 sign_t<-function(x){ if(x>0){ return(1) }else if(x< ...

  10. Laravel中使用QRcode自制二维码

    一.配置 1.在项目根目录输入命令 composer require simplesoftwareio/simple-qrcode 1.3.* 2.在config/app.php 的 provider ...