Educational Codeforces Round 63

A

题目大意就不写了.

挺简单的,若果字符本来就单调不降,那么就不需要修改

否则找到第一次下降的位置和前面的换就好了.

#include<iostream>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 3e5 + 3;
char s[N];
int n;
int x,y;
inline bool check(){
int last = -1;
for(int i = 1;i <= n;++i){
if(last > s[i]) {
x = i - 1,y = i;
return false;
}
last = s[i];
}
return true;
}
int main(){
scanf("%d",&n);
scanf("%s",s + 1);
if(check()) printf("NO\n");
else printf("YES\n%d %d\n",x,y);
return 0;
}

B

题目大意:给一个数字串,每个人可以轮流拿掉其中任何一个数字,串长为\(11\)(保证串长大于\(11\)且为奇数)时结束,这是如果开头为\(8\),则先手获胜,问先手是否有必胜策略

刚开始以为是个博弈论,推了\(20\)分钟,发现,我们设两人一共的操作次数为\(k\),能够影响答案的只有前\(k + 1\)个数,我们将\(8\)看作\(1\),非$8 $看作\(0\)

如果前\(k\)个数\(1\)比较多,那么先手必胜,因为后手拿不玩

反之如果\(0\)比较多,那么先手必败

如果一样多,则取决于第\(k + 1\)的数

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 3e5 + 3;
char s[N];
int n;
int main(){
scanf("%d",&n);
scanf("%s",s + 1);
bool flag = 1;
int need = (n - 11);
int sum1 = 0,sum2 = 0;
for(int i = 1;i <= need;++i)
if(s[i] == '8') sum1++;
else sum2++;
if(sum1 > sum2) printf("YES\n");
else if(sum1 < sum2) printf("NO\n");
else{
if(s[need + 1] == '8') printf("YES\n");
else printf("NO\n");
}
return 0;
}

C

题目大意:给定数组\(x\)与\(y\),问是否存在\(y_i\)和\(b\)将\(x\)中所有的数表示为\(ky_i + b\)的形式(\(x\)数组单调)

看样子自己的数学功底还是不行的

我们试想一下

对于\(a_i\)和\(a_{i + 1}\),如果存在\(y_i\)符合题意,那么一定有\(a_{i + 1} - a_i = ky_i\),也就是说

\(y_i\)要是所有数与其相邻的数差最大公约数的一个因子(这样才能用\(ky_i\)表示出所有的差).

而\(b\)的值,很明显选择\(x_1\)就好了

#include<cstdio>
#include<iostream>
#include<cmath>
#define LL long long
using namespace std;
const int N = 3e5 + 3;
LL a[N],b[N];
inline LL read(){
LL v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
int n,m;
inline LL gcd(LL x,LL y){
return y == 0 ? x : gcd(y,x % y);
}
int main(){
n = read(),m = read();
for(int i = 1;i <= n;++i) a[i] = read();
for(int i = 1;i <= m;++i) b[i] = read();
LL g = a[2] - a[1];
for(int i = 3;i <= n;++i) g = gcd(g,a[i] - a[i - 1]);
LL ans = -1;
for(int i = 1;i <= m;++i) if(g % b[i] == 0){
ans = i;
break;
}
if(ans == -1) puts("NO");
else{
puts("YES");
cout << a[1] << " " << ans << endl;
}
return 0;
}

D

题目大意给定\(x\)和一个数组\(a\),你可以选择一个区间将其所有元素乘\(x\)(当然也可以不乘),求乘完之后的最大字段和.

这道题不会不应该.

但这也告诉了我一个技巧,当仅可以选择一个区间进项操作,然后求答案是,用\(dp\)将状态分为操作前,操作中和操作后进行考虑

那么转移方程很明显了

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#define LL long long
using namespace std;
const int N = 3e5 + 3;
LL dp[N][3];
LL a[N];
int n;LL x;
int main(){
scanf("%d%I64d",&n,&x);
for(int i = 1;i <= n;++i) scanf("%I64d",&a[i]);
dp[1][0] = a[1],dp[1][1] = a[1] * x,dp[1][2] = a[1];
for(int i = 2;i <= n;++i){
dp[i][0] = max(a[i],dp[i - 1][0] + a[i]);
dp[i][1] = max(a[i] * x,max(dp[i - 1][1] + a[i] * x,dp[i - 1][0] + a[i] * x));
dp[i][2] = max(a[i],max(a[i] + dp[i - 1][2],a[i] + dp[i - 1][1]));
}
LL ans = 0;
for(int i = 1;i <= n;++i) ans = max(ans,max(dp[i][0],max(dp[i][1],dp[i][2])));
printf("%I64d\n",ans);
return 0;
}

Educational Codeforces Round 63部分题解的更多相关文章

  1. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  2. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  3. [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)

    Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...

  4. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  5. Educational Codeforces Round 63 (Rated for Div. 2) E 带模高斯消元

    https://codeforces.com/contest/1155/problem/E 题意 \(f(x)=a_0+a_1x+a_2x^2+...+a_kx^k,k \leq 10,0 \leq ...

  6. Educational Codeforces Round 63 (Rated for Div. 2) D dp(最大连续子序列)

    https://codeforces.com/contest/1155/problem/D 题意 一个n个数的数组\(a[i]\),可以选择连续的一段乘x,求最大连续子序列的值 题解 错误思路:贪心, ...

  7. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array (简单DP)

    题目:https://codeforces.com/contest/1155/problem/D 题意:给你n,x,一个n个数的序列,你可以选择一段区间,区间的数都乘以x,然后求出最大字段和 思路: ...

  8. Educational Codeforces Round 63 选做

    D. Beautiful Array 题意 给你一个长度为 \(n\) 的序列.你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) .求操作后最大的最大子段和. 题解 考虑最大子段和的子段 ...

  9. Educational Codeforces Round 16---部分题解

    710A. King Moves 给你图中一点求出它周围有几个可达的点: 除边界之外都是8个,边界处理一下即可: #include<iostream> #include<cstdio ...

随机推荐

  1. pl/sql基础知识—包

    n  包 包用于在逻辑上组合过程和函数,它由包规范和包体两部分组成. 为什么需要包:使用包可以更好的管理自己写的函数.过程 ①我们可以使用create package命令来创建包:     creat ...

  2. 【NS2】学习点滴

    1 $ns duplex-link-op $n2 $n3 queuePos 0.5#此命令用于设置在NAM中显示的队列方向#经测试,发现: # queuePos 0.5表示包从上到下进入队列# que ...

  3. WPF疑难杂症之二(全屏幕窗口)

    原文:WPF疑难杂症之二(全屏幕窗口) 近日的学习中遇到一个非常奇怪的问题:用XAML文件创建了一个全屏幕窗口,然后,在窗口中建立了一个非常简单的动画.一切都在我的掌控之中,实现非常的顺利. WPF中 ...

  4. java代码简单实现队列

    1. 基于链表简单实现 import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; / ...

  5. W600 一块新的 KiCad PCB

    W600 一块新的 KiCad PCB 打算做以下功能. Type-C USB. 使用 KiCad 画板. 加入串口芯片,方便调试. 使用 PCB 天线.

  6. header发送Cookie

    Cookie传达给客户端的原理 平时执行setcookie('key1', 'value1');这样的代码时,浏览器就会收到cookie并保存,但我们并不能从echo出去的内容中看到cookie内容 ...

  7. LocalDate、LocalDateTime与timestamp、Date的转换

    LocalDate.LocalDateTime与timestamp.Date的转换 1.LocalDate转Date LocalDate nowLocalDate = LocalDate.now(); ...

  8. @noi.ac - 442@ 牛羊被他抢了

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 众所周知小G热衷于搏弈,有一天他来到你的大草原上,抢走了你所有的 ...

  9. 认识一下ES6的Reflect和Proxy

    Reflect Reflect要替代Object的很多方法, 将Object对象一些明显属于言内部的方法放到了Reflect对象上,有13个方法 Reflect.apply(target, thisA ...

  10. ip2long与long2IP 分析

    <?php $ip='47.93.97.127'; $long=sprintf("%u",ip2long($ip));//string(9) "794648959& ...