吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
- import os
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- INPUT_NODE = 784
- OUTPUT_NODE = 10
- LAYER1_NODE = 500
- def get_weight_variable(shape, regularizer):
- weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
- if regularizer != None:
- tf.add_to_collection('losses', regularizer(weights))
- return weights
- def inference(input_tensor, regularizer):
- with tf.variable_scope('layer1'):
- weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
- biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
- layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
- with tf.variable_scope('layer2'):
- weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
- biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
- layer2 = tf.matmul(layer1, weights) + biases
- return layer2
- BATCH_SIZE = 100
- LEARNING_RATE_BASE = 0.8
- LEARNING_RATE_DECAY = 0.99
- REGULARIZATION_RATE = 0.0001
- TRAINING_STEPS = 30000
- MOVING_AVERAGE_DECAY = 0.99
- MODEL_SAVE_PATH = "E:\\MNIST_model\\"
- MODEL_NAME = "mnist_model"
- def train(mnist):
- # 定义输入输出placeholder。
- x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
- y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
- regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
- y = inference(x, regularizer)
- global_step = tf.Variable(0, trainable=False)
- # 定义损失函数、学习率、滑动平均操作以及训练过程。
- variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
- variables_averages_op = variable_averages.apply(tf.trainable_variables())
- cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
- cross_entropy_mean = tf.reduce_mean(cross_entropy)
- loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
- learning_rate = tf.train.exponential_decay(
- LEARNING_RATE_BASE,
- global_step,
- mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
- staircase=True)
- train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
- with tf.control_dependencies([train_step, variables_averages_op]):
- train_op = tf.no_op(name='train')
- # 初始化TensorFlow持久化类。
- saver = tf.train.Saver()
- with tf.Session() as sess:
- tf.global_variables_initializer().run()
- for i in range(TRAINING_STEPS):
- xs, ys = mnist.train.next_batch(BATCH_SIZE)
- _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
- if i % 1000 == 0:
- print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
- saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
- def main(argv=None):
- mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
- train(mnist)
- if __name__ == '__main__':
- main()
- import os
- import time
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- INPUT_NODE = 784
- OUTPUT_NODE = 10
- LAYER1_NODE = 500
- BATCH_SIZE = 100
- LEARNING_RATE_BASE = 0.8
- LEARNING_RATE_DECAY = 0.99
- REGULARIZATION_RATE = 0.0001
- TRAINING_STEPS = 30000
- MOVING_AVERAGE_DECAY = 0.99
- MODEL_SAVE_PATH = "E:\\MNIST_model\\"
- MODEL_NAME = "mnist_model"
- def get_weight_variable(shape, regularizer):
- weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
- if regularizer != None:
- tf.add_to_collection('losses', regularizer(weights))
- return weights
- def inference(input_tensor, regularizer):
- with tf.variable_scope('layer1'):
- weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
- biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
- layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
- with tf.variable_scope('layer2'):
- weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
- biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
- layer2 = tf.matmul(layer1, weights) + biases
- return layer2
- # 加载的时间间隔。
- EVAL_INTERVAL_SECS = 10
- def evaluate(mnist):
- with tf.Graph().as_default() as g:
- x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
- y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
- validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
- y = inference(x, None)
- correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
- variables_to_restore = variable_averages.variables_to_restore()
- saver = tf.train.Saver(variables_to_restore)
- while True:
- with tf.Session() as sess:
- ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
- if ckpt and ckpt.model_checkpoint_path:
- saver.restore(sess, ckpt.model_checkpoint_path)
- global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
- accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
- print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
- else:
- print('No checkpoint file found')
- return
- time.sleep(EVAL_INTERVAL_SECS)
- def main(argv=None):
- mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
- evaluate(mnist)
- if __name__ == '__main__':
- main()
吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- TensorFlow入门之MNIST最佳实践
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...
- TensorFlow入门之MNIST最佳实践-深度学习
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
随机推荐
- 转载:DRC
https://cn.mathworks.com/help/audio/ug/dynamic-range-control.html?requestedDomain=cn.mathworks.com h ...
- Linux gd库安装步骤说明
gd 库是 PHP 处理图形的扩展库,它提供了一系列用来处理图片的 API(应用程序编程接口),使用 gd 库可以处理图片或者生成图片.在网站上,gd 库通常用来生成缩略图,或者对图片加水印,或者生成 ...
- mybatis报错:A query was run and no Result Maps were found for the Mapped Statement
转自:https://blog.csdn.net/u013399093/article/details/53087469 今天编辑mybatis的xml文件,出现如下错误: 程序出现异常[A quer ...
- 如何在项目中新建.gitignore文件
1. 在需要创建 .gitignore 文件的文件夹, 右键选择 Git Bash 进入命令行,进入项目所在目录. 2. 输入 touch .gitignore 在文件夹就生成了一个“.gitigno ...
- 关于mybatis中多参数传值
如果前台单独传递多个参数,并且未进行封装,在mybatis的sql映射文件中需要以下标的形式表示传递的参数,从0开始 即:where name=#{0} and password =#{1}:0表示第 ...
- 【SSH】spring 整合 hibernate
spring-hibernate-1.2.9.jar applicationContext.xml <bean id="sessionFactory" class=" ...
- BufferedInputStream 介绍
BufferedInputStream 介绍 BufferedInputStream 是缓冲输入流.它继承于FilterInputStream.BufferedInputStream 的作用是为另一个 ...
- Linux中Oracle启动侦听报错TNS:permission denied的解决方法
最近在开发环境 oracle 启动侦听的时候,出现了 TNS:permission denied 的问题,通过网上和咨询朋友,最终找到了解决方案,现在共享出来给有需要的朋友. [oracle@orac ...
- Centos6.10-FastDFS-Storage.conf配置示例
Centos610系列配置 # is this config file disabled # false for enabled # true for disabled disabled = fals ...
- 总结fiddler抓https包
把fiddler工具>选项>https>勾选所有,点击actions,导出的证书导入到浏览器(打开右上角浏览器设置>选项>高级>证书>查看证书>证书机构 ...