import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "E:\\MNIST_model\\"
MODEL_NAME = "mnist_model" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__ == '__main__':
main()

import os
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "E:\\MNIST_model\\"
MODEL_NAME = "mnist_model" def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 # 加载的时间间隔。
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} y = inference(x, None)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
evaluate(mnist) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  2. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  3. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  6. 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  7. TensorFlow入门之MNIST最佳实践

    在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...

  8. TensorFlow入门之MNIST最佳实践-深度学习

    在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...

  9. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

随机推荐

  1. Apache Kafka(五)- Safe Kafka Producer

    Kafka Safe Producer 在应用Kafka的场景中,需要考虑到在异常发生时(如网络异常),被发送的消息有可能会出现丢失.乱序.以及重复消息. 对于这些情况,我们可以创建一个“safe p ...

  2. 事务:Transaction详解

    1.事务概念: 一组sql语句操作单元,组内所有SQL语句完成一个业务,如果整组成功:意味着全部SQL都实现:如果其中任何一个失败,意味着整个操作都失败.失败,意味着整个过程都是没有意义的.应该是数据 ...

  3. 每天进步一点点------Allegro PCB

    Allegro PCB 1.如何在allegro中取消花焊盘(十字焊盘) set up->design parameter ->shape->edit global dynamic ...

  4. 对已经存在的没有唯一标识的表添加一个自增的id字段(利用序列sequence)操作过程

    1.原始的数据表 2.操作 -- 创建序列 test_data_file_Id_Seq -- create sequence Test_data_file_Id_Seq increment by 1 ...

  5. python"TypeError: 'NoneType' object is not iterable"错误解析

    尊重原创博主,原文链接:https://blog.csdn.net/dataspark/article/details/9953225 [解析] 一般是函数返回值为None,并被赋给了多个变量. 实例 ...

  6. buuctf 二维码

    首先下载文件 然后用解压工具解压之后 发现是一个二维码 扫描二维码 并没有拿到 flag 然后将图片拖进 hxd中搜索PK发现有一个压缩包  将压缩包提取出来 暴力破解 然后得到密码 然后解压 然后得 ...

  7. vue天气查询

    天气查询包括回车查询和点击查询两种功能 回车查询 1.按下回车(v-on+.enter) 2.查询数据(axios+接口+v-model) 3.渲染数据(v-for+arr) 点击查询 1.点击城市查 ...

  8. 连接查询:inner join,left join,right join

    感谢原创:https://blog.csdn.net/plg17/article/details/78758593 准备工作: 1)新建两张表a_table和b_table: create table ...

  9. apache的下载

    官网http://www.apache.org/ 首页第三行左右 点a number of third party vendors 再点第一个ApacheHaus 最后来到windows的下载页面 h ...

  10. LinuxC下argv,argc[]的意义

    MarkdownPad Document *:first-child { margin-top: 0 !important; } body>*:last-child { margin-botto ...