吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "E:\\MNIST_model\\"
MODEL_NAME = "mnist_model" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__ == '__main__':
main()
import os
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "E:\\MNIST_model\\"
MODEL_NAME = "mnist_model" def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 # 加载的时间间隔。
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} y = inference(x, None)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
evaluate(mnist) if __name__ == '__main__':
main()
吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- TensorFlow入门之MNIST最佳实践
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...
- TensorFlow入门之MNIST最佳实践-深度学习
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
随机推荐
- testng如何实现并发
参考: https://www.cnblogs.com/znicy/p/6534893.html
- selenium的定位方法-单元素定位
selenium自动化测试中,提供了单个元素定位方法,多个元素定位方法,2种方式都是根据元素属性:ID.NAME.CLASS_NAME.TAG_NAME.CSS_SELECTOR.XPATH.LINK ...
- [Luogu]小Z的AK计划
Description Luogu2107 Solution 一开始打了一个60分的暴力DP,结果一分都没得--本地调了好久才发现是没开long long. 由于我的DP方程没有任何性质,就是一个01 ...
- Python记:索引操作示例:将以数指定年,月,日的日期打印出来
————————————————————————————————————不要停止奔跑,不要回顾来路,来路无可眷恋,值得期待的只有前方. months=[ 'January', 'February', ...
- [vue学习]快速搭建一个项目
安装node.js 官网:https://nodejs.org/en/ 淘宝NPM镜像(npm是外网,用国内代理下载安装贼快) $ npm install -g cnpm --registry=htt ...
- FreeRTOS学习笔记2:列表
list.h 列表结构List_t 列表:主要看三个 xLIST:1.5检查列表完整性的.但是需要开启.默认不开启 2:记录列表中列表项的 数量:3:记录当前列表项 索引号:4:列表中的最后一个 列表 ...
- 20200227英语上课笔记 about advantage and disadvantage
Hello and welcome to class! Remember to keep your microphone off when you are not speaking Pronuncia ...
- * ./common/http.js in ./node_modules/cache-loader/dist/cjs.js??ref--12-0!./node_modules/babel-loader/lib!./node_modules/cache-loader/dist/cjs.js??ref--0-0!./node_modules/vue-loader/lib??vue-loader-opt
vue项目报错如下,找到原因之后,其实超简单,请看: 原来是引入文件路径出现问题,想起刚刚引入了一个文件,一修改,果然药到病除! ----------------------------------- ...
- java篇 之 静态
Final:不可改变 Static:静态修饰符,在编译阶段就能确定了,可以修饰成员变量,相应的称之为静态变量 是一个共享的变量(被这个类和这个类所产生的对象所共享的,他是唯一的,出生时间 为类第一次产 ...
- openresty-component
1.Array Var Nginx Module ArrayVarNginxModulelocation /foo { array_split ',' $arg_files to=$array; # ...