吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "E:\\MNIST_model\\"
MODEL_NAME = "mnist_model" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__ == '__main__':
main()
import os
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "E:\\MNIST_model\\"
MODEL_NAME = "mnist_model" def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 # 加载的时间间隔。
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} y = inference(x, None)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
evaluate(mnist) if __name__ == '__main__':
main()
吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- TensorFlow入门之MNIST最佳实践
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...
- TensorFlow入门之MNIST最佳实践-深度学习
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
随机推荐
- 题解【BZOJ4145】「AMPPZ2014」The Prices
题目描述 你要购买 \(m\) 种物品各一件,一共有 \(n\) 家商店,你到第 \(i\) 家商店的路费为 \(d[i]\),在第 \(i\) 家商店购买第 \(j\) 种物品的费用为 \(c[i] ...
- 并发之ATOMIC原子操作--Unsafe解析(三)
Atomic 类的原子操作是依赖java中的魔法类sun.misc.Unsafe来实现的,而这个类为我们提供了访问底层的机制,这种机制仅供java核心类库使用,而不应该被普通用户使用. 获取Unsaf ...
- 问题 B: 奇怪的电梯
问题 B: 奇怪的电梯 时间限制: 1 Sec 内存限制: 128 MB[命题人:admin] 题目描述 大楼的每一层楼都可以停电梯,而且第i层楼(1<=i<=N)上有一个数字Ki(0& ...
- Linux - Shell - find - 基础
概述 find 基础 背景 查找文件 人的记忆能力, 是有限的 计算机里的文件数量, 虽然不是无限, 但是也不少 要去找那些 记不清楚的文件, 必然要用查找 准备 OS centos7 用户 root ...
- Linux使用mount挂载samba共享文件夹
挂载smb的目录,使用读写644权限 mount -t cifs -o "rw,dir_mode=0644,file_mode=0644,username=username,password ...
- 每天进步一点点------Allegro中SYMBOL种类
Allegro 中SYMBOL 种类在Allegro 中, Symbol 有五种, 它们分别是Package Symbol .Mechanical Symbol.Format Symbol.Shape ...
- bugku 管理员系统
这一个是伪造ip X-FORWARDED-FOR:127.0.0.1 用到了XFF头 首先打开网站会发现一个登录界面 然后用开发者工具看一下 后台会发现一串用base64加密的密文 用base64解密 ...
- 后台怎么区分接口要写在哪个service类中呢(根据service服务区分)
1,明确页面要实现什么功能,则页面对应的controller要写对应的controller方法 2,这个功能最终要由谁实现完成,在对应的service中药实现这个功能 3,这个接口的实现就写在最终完成 ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 大小端(MSB & LSB)
谈到字节序的问题,必然牵涉到两大CPU派系.那就是Motorola的PowerPC系列CPU和Intel的x86系列CPU.PowerPC系列采用big endian方式存储数据,而x86系列则采用l ...