PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+;
Problem:
subsequence clustering.
Challenging:
discover patterns is challenging because it requires simultaneous segmentation and clustering of the time series + interpreting the cluster results is difficult.
Why discover time series patterns is a challenge?? thinking by yourself!! there are already so many distance measures(DTW, manifold distance) and clustering methods(knn,k-means etc.). But I admit the interpretation is difficult.
Introduction:
long time series ----breakdown-----> a sequence of states/patterns ------> so time series can be expressed as a sequential timeline of a few key states. -------> discover repeated patterns/ understand trends/ detect anomalies/ better interpret large and high-dimensional datasets.
Key steps: simultaneously segment and cluster the time series.
Unsupervised learning: hard to interpretation, after clustering, you have to view data itself.
how to discover interpretable structure in the data?
Traditional clustering methods are not particularly well-suited to discover interpretable structure in the data. This is because they typically rely on distance-based metrics
distance-based metrics, DTW.
距离式的算法,在处理multivariate time series上有劣势,看不到细微的数据结构相似性。
Propose a new method for multivariate time series clustering TICC:
- define each cluster as a dependency network showing the relationships between the different sensors in a short subsequence.
- each cluster is a markov random field.
- In thes MRFs, an edge represents a partial correlation between two variables.
- learn each cluster's MRF by estimating a sparse Gaussian inverse covariance matrix.
- This network has multiple layers.
- the number of layers corresponds to the window size of a short subsequence.
- 逆协方差矩阵定义了MRF dependency network 的adjaccency matrix.
Related work:
time series clustering and convex optimization;
variations of dtw; symbolic representations; rule-based motif discovery;
However, these methods generally rely on distance-based metrics.
TICC ------ a model-based clustering method, like ARMA, Gaussian mixture or hidden markov models.
- define each cluster by a Gaussian inverse covariance.
- so the Gaussian inverse covariance defines a Markov random field encoding the structural representation.
- K clusters/ inverse covariances.
selecting the number of clusters: cross-validation; mornalized mutual information; BIC or silhouette score.
看不懂哇 T T
Supplementary knowledge:
1. 对于unsupervised learning, 目前对结果的解释或者中间参数的选取,全是靠经验。
2. Aarhus data, Martin, 做多变量time series 预测。
3. Toeplitz Matrices: 常对角矩阵。
4. ticc code
Reference:
PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data的更多相关文章
- PP: Tripoles: A new class of relationships in time series data
Problem: ?? mining relationships in time series data; A new class of relationships in time series da ...
- 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)
图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/ka ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval
from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series se ...
- PP: Unsupervised deep embedding for clustering analysis
Problem: unsupervised clustering represent data in feature space; learn a non-linear mapping from da ...
- [转]Multivariate Time Series Forecasting with LSTMs in Keras
1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- PP: Deep clustering based on a mixture of autoencoders
Problem: clustering A clustering network transforms the data into another space and then selects one ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
随机推荐
- gcd手写代码及STL中的使用方法
一.手写代码 inline int gcd(int x,int y){ if(y==0) return x; else return(gcd(y,x%y)); } 二.STL中的使用方法 注:在STL ...
- 物联网开源框架Thingsboard使用总结
Thingsboard中文社区:http://thingsboard.iotschool.com/ 参考网址:https://thingsboard.io/docs/getting-started-g ...
- 通过Java代码获取系统信息
在开发中,我们需要获取JVM中的信息,以及操作系统信息,内存信息,CPU信息,磁盘信息,网络信息等,通过Java的API不能获取内存等信息,需要sigar的第三方依赖包. ①:加入依赖 <dep ...
- HTML表单概念、语法及创建表单,案例
form 标签 Input标签的type属性值 单行文本域 <input type="text" /> 图像域(图像提交按钮) 下拉菜单和列表标签 select 标签属 ...
- excel的count、countif、sunif、if
一.count统计数值个数 格式:count(指定区域) , 例如:count(B2:G5) 二.countif统计数值满足条件个数 格式:COUNTIF(条件区域,指定条件) ,例如:count ...
- laravel手动数组分页
laravel文档中已经有写如何自己使用分页类去分页了,但没有详细说明. 如果你想手动创建分页实例并且最终得到一个数组类型的结果,可以根据需求来创建 IlluminatePaginationPagin ...
- Tomcat + mysql + myeclipse 启动遇到的问题
1. 问题: Tomcat启动时报错如下:Table 'performance_schema.session_variables' doesn't exist 2. 网络上普遍找到的解决办法: 控制台 ...
- Redis的各个数据的类型基本命令
什么是Redis: 概念: Redis (REmote DIctionary Server) 是用 C 语言开发的一个开源的高性能键值对(key-value)数据库. 特征:1. 数据间没有必然的关联 ...
- pillow 模块
pillow模块 图片处理 中文文档 安装 pip install Pillow 对图片旋转90度显示 from PIL import Image im=Image.open("t.jpg& ...
- oracle备份与还原数据
一.表数据备份与还原 creat table 备份表 select * from 原表 where insert into 原表 select * from 备份表 二.利用备份 ...