opencv:边缘保留滤波
EPF滤波概述
均值与滤波的缺点:并没有考虑中心像素点对整个输出像素的贡献,实际上锚定的那个点贡献应该是最大的
高斯滤波的缺点:当边缘值梯度很大的时候,应减少中心像素点的权重,而高斯滤波没有考虑
边缘保留滤波:
- 高斯双边
- 均值迁移
- 局部均方差
高斯双边滤波
非局部均值滤波
example
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
void add_salt_and_pepper_noise(Mat& image);
void add_gaussian_noise(Mat& image);
int main(int argc, char** argv)
{
Mat src = imread("f:/images/lena.jpg");
if (src.empty())
{
printf("Could not find the image!\n");
return -1;
}
namedWindow("input", WINDOW_AUTOSIZE);
imshow("input", src);
//add_salt_and_pepper_noise(src);
add_gaussian_noise(src);
Mat dst;
// 中值滤波
medianBlur(src, dst, 3);
imshow("median denoise demo", dst);
// 高斯滤波 高斯滤波对椒盐噪声去噪效果不理想
GaussianBlur(src, dst, Size(5, 5), 0);
imshow("guassian denoise demo", dst);
// 高斯双边
bilateralFilter(src, dst, 0, 100, 10);
imshow("bilateralF denoise demo", dst);
// 如果不加噪声, 直接进行高斯双边,去掉微小细节,保留边缘
src = imread("f:/images/lena.jpg");
bilateralFilter(src, dst, 0, 100, 10);
imshow("src - bilateralFilter", dst);
// NLM 非局部均值去燥
src = imread("f:/images/lena.jpg");
add_gaussian_noise(src);
// 除了彩色版本,还有灰度版本等一些其他版本
fastNlMeansDenoisingColored(src, dst, 3., 3., 7, 21);
imshow("NLM", dst);
waitKey(0);
destroyAllWindows();
return 0;
}
void add_salt_and_pepper_noise(Mat& image) {
RNG rng(12345);
int h = image.rows;
int w = image.cols;
int nums = 10000;
for (int i = 0; i < nums; i++) {
int x = rng.uniform(0, w);
int y = rng.uniform(0, h);
if (i % 2 == 1) {
image.at<Vec3b>(y, x) = Vec3b(255, 255, 255);
}
else {
image.at<Vec3b>(y, x) = Vec3b(0, 0, 0);
}
}
imshow("salt and pepper noise", image);
}
void add_gaussian_noise(Mat& image) {
// 高斯噪声
Mat noise = Mat::zeros(image.size(), image.type());
// 图像,均值,方差,显示一幅随机图像
randn(noise, Scalar(15, 25, 45), Scalar(30, 30, 30));
Mat dst;
add(image, noise, dst);
dst.copyTo(image);
imshow("gaussian noise", image);
}
opencv:边缘保留滤波的更多相关文章
- 9、OpenCV Python 边缘保留滤波
__author__ = "WSX" import cv2 as cv import numpy as np # 边缘保留滤波 十分重要(美颜的核心) # 高斯双边模糊(考虑到了像 ...
- opencv python:边缘保留滤波(EPF)
EPF:E边缘,P保留,F滤波 import cv2 as cv import numpy as np def bi_demo(image): # bilateralFilter(src, d, si ...
- 图像处理------Mean Shift滤波(边缘保留的低通滤波)
一:Mean Shift算法介绍 Mean Shift是一种聚类算法,在数据挖掘,图像提取,视频对象跟踪中都有应用.本文 重要演示Mean Shift算法来实现图像的低通边缘保留滤波效果.其处理以后的 ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- 目标跟踪之粒子滤波---Opencv实现粒子滤波算法
目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方 ...
- opencv边缘滤波
2018-03-0422:16:11 import cv2 as cv import numpy as np def bi_demo (image): print ("ceshi" ...
- CUDA加opencv复现导向滤波算法
CUDA是GPU通用计算的一种,其中现在大热的深度学习底层GPU计算差不多都选择的CUDA,在这我们先简单了解下其中的一些概念,为了好理解,我们先用DX11里的Compute shader来和CUDA ...
- OpenCV---边缘保留滤波EPF
OpenCV经典的两种实现EPF方法:高斯双边和均值迁移 一:双边模糊 差异越大,越会完整保留 def bi_demo(image): dst = cv.bilateralFilter(image,0 ...
- opencv中的滤波
以前的时候,为了过滤图像中的一些噪点,学过一些简单的滤波,比如中值滤波,均值滤波,也是自己实现的. 在opencv中有现成的函数可以调用,实现滤波的操作. 函数的原型如下: CVAPI(void) c ...
随机推荐
- Doing Homework HDU - 1074 状态压缩
#include<iostream> #include<cstring> #include<cstdio> #include<string> #incl ...
- Hive0.13_函数
Hive函数大全 一.关系运算: 1. 等值比较: = 2. 等值比较:<=> 3. 不等值比较: <>和!= 4. 小于比较: < 5. 小于等于比较: <= 6 ...
- numpy 中array 和ndrray的区别联系
numpy.array() 标明array只是一个方法 ndarray 是类名,是一个实例. a=numpy.array(b) #这是把变量b转换为数组a,这里array()是个方法,a的类型 ...
- unittest框架下的HTMLTestRunner报告模块使用及优化
引言 在做接口自动化测试的时候,使用python单元测试框架unittest下HTMLTestRunner报告模板,可以很好的展示我们测试结果的数据. 官方的标准版模板地址:http://tungwa ...
- mybatis-plus - TableInfo
在前面 的 inject() 方法中, 调用了一个 TableInfoHelper.initTableInfo(builderAssistant, modelClass) 方法, 来获取 表信息: T ...
- 搭建GithubPages静态博客踩过的坑
前言 搭建了属于自己的GitHub Page作为个人博客,上手Hexo+Material感觉比较花哨,后改用Yilia主题效果良好.期间发现并解决了一些问题,贴出值得记录的部分作为参考: 维护 书写 ...
- Django文件夹
Django文件 App文件夹 migrations文件 生成models创建表的翻译语句 telemplatetags文件夹 telemplatetags文件夹下的文件专门用来创建自定义标签.自定义 ...
- 题解 【Codeforces988E】Divisibility by 25
本题是数论好题! 首先我们需要了解一个关于数论的性质: 一个数只要后两位能被25(或4)整除,这个数就能被25(或4)整除. 同理,后三位:(或8).后四位:(或16)亦是如此. 所以,我们只需要判断 ...
- [bzoj1905] [ZJOI2007] Hide 捉迷藏
题意简述 给定一棵 \(n\) 个点的树,起初每个点都为黑色. 2种操作,要么改变某个点的颜色(由黑至白或由白至黑),要么询问距离最远的两个黑点间的距离. 共 \(m\) 次操作. \(n\leq 1 ...
- git的分支
git branch : git branch -r #查看远程分支 git branch -a #查看本地分支和远程分支 git branch -v #查看本地库的所有分支 git br ...