Description
 
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall
 be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions
 of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly
 smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
看了几篇博客想了好久才差不多理解...https://blog.csdn.net/lishuhuakai/article/details/8060529 https://blog.csdn.net/qq_34374664/article/details/52249801 这两篇讲的更详细一点
首先是对于输入的长方体的处理,长方体长宽高最多三者两两不同,这里有一个比较重要的思想就是把一个长方体拓展成三个长方体,每个长方体的高是原长方体的长/宽/高。注意,拓展成六个是错误的,因为高一样,剩下两条边x作为长y作为宽和x作为宽y作为长是一样的。在这里可以选择把两边里较长的赋值给x,较短的给y,为了方便判定(当然也可以随机,只不过判定的时候写的会麻烦一点)。为了优化时间,这里可以对结构体数组进行排序(按照面积递减,按照x,y的值递减都可以,按照面积的话比当前面积小的肯定不可能作为底座,按照x,y的话最长边比当前矩形最长边小的肯定也不可能),然后进行线性dp就可以了,dp[i]=max(dp[i],dp[k]+h[i])。注意初始化,假设一个长方体没有任何底座,他自己的高就是最终的高,同时也要注意,排了序以后在当前长方体前面的也不一定能成为底座,还得再判定一下。
#include <bits/stdc++.h>
using namespace std;
struct rectangle
{
int x;
int y;
int z;
int size;
};
bool cmp(rectangle a,rectangle b)
{
// if(a.x!=b.x)return a.x>b.x;
// else return a.y>b.y;
return a.size>b.size;
}
vector<rectangle>v;
int n;
//dp[i]:以第i个为顶的最大高度 dp[i]=max(dp[i],dp[k]+h[i])
int dp[]; int main()
{
int i,j;
int cnt=;
while(scanf("%d",&n)&&n)
{
cnt++;
v.clear();
rectangle occ;
v.push_back(occ);
for(i=;i<=n;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
rectangle temp;
temp.z=x;
temp.x=max(y,z);
temp.y=min(y,z);
temp.size=y*z;
v.push_back(temp);
temp.z=y;
temp.x=max(x,z);
temp.y=min(x,z);
temp.size=x*z;
v.push_back(temp);
temp.z=z;
temp.x=max(x,y);
temp.y=min(x,y);
temp.size=x*y;
v.push_back(temp);
}
sort(v.begin()+,v.end(),cmp);//不要sort占位的
for(i=;i<v.size();i++)//初始化!!假设一个长方体没有任何底座,他自己的高就是最终的高
{
dp[i]=v[i].z;
}
int ans=dp[];
for(i=;i<v.size();i++)
{
for(j=;j<i;j++)//只有i之前的能作为底座
{
if(v[j].x>v[i].x&&v[j].y>v[i].y)
{
dp[i]=max(dp[i],dp[j]+v[i].z); }
ans=max(ans,dp[i]);
}
} printf("Case %d: maximum height = %d\n",cnt,ans);
}
return ;
}

HDU 1069 Monkey and Banana(线性DP)的更多相关文章

  1. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  2. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

  3. HDU 1069 Monkey and Banana(DP——最大递减子序列)

    题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 题意描述: 给n块砖,给出其长,宽和高 问将这n块砖,怎样叠放使得满足以下条件使得 ...

  4. HDU 1069 Monkey and Banana (dp)

    题目链接 Problem Description A group of researchers are designing an experiment to test the IQ of a monk ...

  5. HDU 1069 Monkey and Banana ——(DP)

    简单DP. 题意:给出若干种长方体,如果摆放时一个长方体的长和宽小于另一个的长宽,那么它可以放在另一个的上面,问最高能放多少高度.每种长方体的个数都是无限的. 做法:因为每种个数都是无限,那么每种按照 ...

  6. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  7. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  8. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  9. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. Linux - Shell - 参数获取

    概述 参数 背景 复习一下 shell 脚本的参数获取 场景 os centos7 1. 参数: 基础 概述 简单描述 参数 1. 获取参数 获取 第一个 参数 获取参数 使用 ${num} 获取参数 ...

  2. 记录 shell学习过程(8)函数

    start () { echo "Apache start ...... [OK]" #return 0 可以写一个返回值,比如执行成功返回 0 } stop () { echo ...

  3. Runtime.getRuntime.exec()执行linux脚本导致程序卡死有关问题

    Runtime.getRuntime.exec()执行linux脚本导致程序卡死问题问题: 在Java程序中,通过Runtime.getRuntime().exec()执行一个Linux脚本导致程序被 ...

  4. 用eclipse中自带的jetty启动项目

    1.建立datasources.xml,创建jndi <jee:jndi-lookup id="datasource" jndi-name="jndiname&qu ...

  5. sql server和eclipse连接代码

    新建java程序:必须添加sql server驱动程序(上篇博文中有详细过程) package asd; import java.sql.*; //创建数据库连接类 public class DBCo ...

  6. Ninject 2.x细说---2.绑定和作用域

    Ninject 2.x细说---2.绑定和作用域 转载weixin_33725272 最后发布于2011-11-06 00:03:00 阅读数 9  收藏   Ninject中提供多种接口和实现类的绑 ...

  7. mysql 父子表 注意事项

    今天遇到一个问题,父子表关联查询时总是多出几条数据,后来排查是父子关系的字段 类型不一致导致的

  8. oracle使用resultMap实现高级结果映射

    resultMap的属性: 1.属性 id:resultMap的唯一标识.type:resulMap的映射结果类型(一般为Java实体类).2.子节点 id:一般对应数据库的主键 id,设置此项可以提 ...

  9. form表单提交且接口回调显示提交成功

    前端: <form method="post" enctype="multipart/form-data" id="formSubmit&quo ...

  10. 移动端CSS重置

    移动端 CSS Reset 该怎么写 为了应对各大浏览器厂商对浏览器默认样式的不统一处理,我们往往会进行一个 css reset 操作,由于没有标准而且受个人偏好影响,每个公司实现的都不尽相同.关于 ...