UVA12004 Bubble Sort

Check the following code which counts the number of swaps of bubble sort.

int findSwaps( int n, int a[] )
{
int count = 0, i, j, temp, b[100000];
for( i = 0; i < n; i++ ) {
b[i] = a[i];
}
for( i = 0; i < n; i++ ) {
for( j = 0; j < n - 1; j++ ) {
if( b[j] > b[j+1] ) {
temp = b[j];
b[j] = b[j+1];
b[j+1] = temp;
count++;
}
}
}
return count;
}

You have to find the average value of ’count’ in the given code if we run findSwaps() infinitely many times using constant ’n’ and each time some random integers (from 1 to n) are given in array a[]. You can assume that the input integers in array a[] are distinct.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases. Each test case contains an integer n (1 ≤ n ≤ 105) in a single line.

Output

For each case, print the case number and the desired result. If the result is an integer, print it. Otherwise print it in ‘p/q’ form, where p and q are relative prime.

Sample Input

2
1
2

Sample Output

Case 1: 0
Case 2: 1/2

思路

一句话题意:求长度为n的排列的期望逆序对数。

很简单,\(f(n)=f(n-1)+\frac{n-1}2=\frac{n\times(n-1)}4,f(1)=0\)。

为什么呢?假设把\(n\)插入长度\((n-1)\)的排列,有\(n\)种方法。期望增加的逆序对数就是\(\frac{1+2+...n-1}n=\frac{n\times (n-1)}{2n}=\frac{n-1}2\)

所以\(f(n)=f(n-1)+\frac{n-1}2\)

很简单吧?别忘了开long long

代码

#include<bits/stdc++.h>
using namespace std;
#define LL long long int T, i;
LL n; int main(){
scanf( "%d", &T );
for ( int i = 1; i <= T; ++i ){
scanf( "%lld", &n );
n = n * ( n - 1 ) / 2;
if ( n & 1 ) printf( "Case %d: %lld/2\n", i, n );
else printf( "Case %d: %lld\n", i, n / 2 );
}
return 0;
}

「UVA12004」 Bubble Sort 解题报告的更多相关文章

  1. 「SP25784」BUBBLESORT - Bubble Sort 解题报告

    SP25784 BUBBLESORT - Bubble Sort 题目描述 One of the simplest sorting algorithms, the Bubble Sort, can b ...

  2. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  3. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

  4. 「NOI2015」寿司晚宴 解题报告

    「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...

  5. 「SCOI2015」国旗计划 解题报告

    「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...

  6. 「SDOI2014」向量集 解题报告

    「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...

  7. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  8. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  9. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

随机推荐

  1. 一些关于中国剩余定理的数论题(POJ 2891/HDU 3579/HDU 1573/HDU 1930)

    2891 -- Strange Way to Express Integers import java.math.BigInteger; import java.util.Scanner; publi ...

  2. supersockets单个 listener

    在下面的配置中,你可以配置服务器的监听 ip/port: <superSocket> <servers> <server name="TelnetServer& ...

  3. 2018-10-19-Nuget-通过-dotnet-命令行发布

    title author date CreateTime categories Nuget 通过 dotnet 命令行发布 lindexi 2018-10-19 09:15:53 +0800 2018 ...

  4. git分支合并及冲突解决

    小明在愉快的敲代码 vim ok 他在ok里敲了simachanping git commit -am "commit first version by xiaoming" 然后这 ...

  5. Flex AIR应用拍照功能(Android和IOS版本)

    说明: 使用AIR处理拍照后的回调.照片文件的保存功能时,针对于IOS和Android两个平台是有所不同的. 但.关于如何调用摄像头进行拍照这个功能,Android和IOS是一致的. 技术实现: 1) ...

  6. java数组简介

    数组(Array)是Java 语言中内置的一种基本数据存储结构,通俗的理解,就是一组数的集合,目的是用来一次存储多个数据.数组是程序中实现很多算法的基础,可以在一定程度上简化代码的书写. 备注: 数组 ...

  7. java super关键字和调用父类构造方法

    表示父类对象的默认引用 如果子类要调用父类被覆盖的实例方法,可用super作为调用者调用父类被覆盖的实例方法. 使用super调用父类方法 使用super调用父类的构造方法 调用构造方法 本类中调用另 ...

  8. H3C 环路避免机制二:水平分割

  9. H3C DNS简介

  10. 【33.18%】【hdu 5877】Weak Pair (3种解法)

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submissi ...