【题解】SDOI2010所驼门王的宝藏(强连通分量+优化建图)

最开始我想写线段树优化建图的说,数据结构学傻了233

虽然矩阵很大,但是没什么用,真正有用的是那些关键点

考虑关键点的类型:

  • 横走型
  • 竖走型
  • 八连通型

本质上只有两种类型(走一大串/走八连通),我们考虑这样一种建图方法:

  • 对于每一行每一列建立一个点(点权为\(0\))
  • 对于关键点建立一个点(点权为\(1\))

然后考虑这样一种建图方式,得到一个有点权无边权图

  • 关键点所在的行与列无偿地向这个关键点连边
  • 横走型的关键点向行连一条边,竖走型同理
  • 八连通型直接向周围的关键点连边

题目要求走到的点最多,也就是求一条最长路径,但是显然这个图上可能有正环,但是点权贡献只能算一次,自然想到直接缩点。缩完点后得到一个\(DAG\),直接在这个\(DAG\)上\(dp\)

\(dp_i\)表示从这个节点出发最长的路径,直接转移。

分析点数,显然是\(O(3n)\),分析边数,一个点最多连接十条边,\(tarjin\)是\(O(n)\)的,但是我们用了\(map\)所以复杂度\(O(n\log n)\),实际上,直接用unordered_map就是\(O(n)\)了,就帅一点...

至于实现,直接用\(map\)存std::pair < int ,int >就好了

//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map> using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
} const int maxn=1e5+5;
struct E{
int to,nx;
E(){to=nx=0;}
E(const int&a,const int&b){to=a;nx=b;}
};
vector < E > e,e2; pair < int ,int > node[maxn];
int head[maxn*3];
int head2[maxn*3];
int TT[maxn];
int dp[maxn*3];
int n,m,k; void add2(const int&fr,const int&to){
e2.push_back(E(to,head2[fr]));
head2[fr]=e2.size()-1;
}
void add(const int&fr,const int&to){
e.push_back(E(to,head[fr]));
head[fr]=e.size()-1;
} int idx[maxn],idy[maxn];
int w[maxn*3];
int stk[maxn*3];
int qaq,top;
int be[maxn*3];
int siz[maxn*3];
int dfn[maxn*3],low[maxn*3],in[maxn*3];
int tim,ans;
int qaqcnt; int dfs2(const int&now){
if(dp[now]) return dp[now];
register int ret=0;
for(register int t=head2[now];t;t=e2[t].nx)
ret=max(ret,dfs2(e2[t].to));
return dp[now]=ret+siz[now];
} void dfs(const int&now){
dfn[now]=low[now]=++tim;in[now]=1;stk[++top]=now;
for(register int t=head[now];t;t=e[t].nx){
if(!dfn[e[t].to])
dfs(e[t].to),low[now]=min(low[now],low[e[t].to]);
if(dfn[e[t].to]&&in[e[t].to])
low[now]=min(low[now],dfn[e[t].to]);
}
if(dfn[now]==low[now]){
register int temp=0;
++qaq;
do{
temp=stk[top--];
in[temp]=0;siz[qaq]+=w[temp];
be[temp]=qaq;
}while(temp!=now);
}
} map < pair < int ,int > , int > s;
inline int init(const int&a,const int&b,const int&c){
e.push_back(E()); e.push_back(E());
e2.push_back(E()); e2.push_back(E());
qaqcnt=k=a;n=b;m=c;
for(register int t=1;t<=k;++t){
register int t1=qr(),t2=qr(),t3=qr();
node[t].first=t1;
node[t].second=t2;
TT[t]=t3; w[t]=1;
s[make_pair(t1,t2)]=t;
if(!idx[t1]) idx[t1]=++qaqcnt;
if(!idy[t2]) idy[t2]=++qaqcnt;
add(idx[t1],t);
add(idy[t2],t);
} for(register int t=1;t<=k;++t){
if(TT[t]==1) add(t,idx[node[t].first]);
if(TT[t]==2) add(t,idy[node[t].second]);
if(TT[t]==3)
for(register int dx=-1;dx<=1;++dx)
for(register int dy=-1;dy<=1;++dy)
if(dx||dy){
auto f=s.find(make_pair(node[t].first+dx,node[t].second+dy));
if(f!=s.end()) add(t,f->second);
}
} for(register int t=1;t<=qaqcnt;++t)
if(!dfn[t]) dfs(t);
for(register int t=1;t<=qaqcnt;++t)
for(register int i=head[t];i;i=e[i].nx)
if(be[e[i].to]!=be[t])
add2(be[t],be[e[i].to]);
for(register int t=1;t<=qaq;++t)
ans=max(ans,dfs2(t));
printf("%d\n",ans);
return 0;
} int main(){
int a=qr(),b=qr(),c=qr();
return init(a,b,c);
}

【题解】SDOI2010所驼门王的宝藏(强连通分量+优化建图)的更多相关文章

  1. BZOJ1924:[SDOI2010]所驼门王的宝藏(强连通分量,拓扑排序)

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  2. BZOJ 1924 所驼门王的宝藏(强连通分量缩点+DAG最长链)

    思路不是很难,因为宝藏只会在给出的n个点内有,于是只需要在这n个点里面连边,一个点如果能到达另一个点则连一条有向边, 这样用强连通分量缩点后答案就是DAG的最长链. 问题在于暴力建图是O(n^2)的, ...

  3. 题解 [SDOI2010]所驼门王的宝藏

    传送门 保分题再度爆零,自闭ing×2 tarjan没写vis数组,点权算的也有点问题 这题情况3的连边有点麻烦,考场上想了暴力想了二分就是没想到可以直接拿map水过去 不过map果然贼慢,所以这也是 ...

  4. [BZOJ 1924][Sdoi2010]所驼门王的宝藏

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1285  Solved: 574[Submit][Sta ...

  5. 洛谷 2403 [SDOI2010] 所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先知”的Alpaca L. Sotomon是这个家族的领袖,外人也称其为“所驼门王”.所驼门王毕生致力于维护家族的安定与和谐, ...

  6. [SDOI2010]所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...

  7. [LuoguP2403][SDOI2010]所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...

  8. BZOJ 1924: [Sdoi2010]所驼门王的宝藏 【tarjan】

    Description 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先 知”的Alpaca L. Sotomon 是这个家族的领袖,外人也称其为“所驼门王”.所 驼门王毕生致力于维 ...

  9. 洛谷 P2403 [SDOI2010]所驼门王的宝藏 题解

    题目描述 分析 先放一张图便于理解 这一道题如果暴力建图会被卡成\(n^{2}\) 实际上,在我们暴力建图的时候,有很多边都是重复的 假如一行当中有许多横天门的话,我们就不必要把这一行当中的所有点和每 ...

随机推荐

  1. Namenode文件系统命名空间映像文件及修改日志

  2. @codeforces - 1205C@ Palindromic Paths

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 这是一道交互题. 现在有一个 n*n 的矩阵,每个位置是 0 或 ...

  3. python 直接if判断和is not None的区别

    tmpName = ''if tmpName: print tmpName #没有输出if tmpName is not None: print tmpName #有输出,是空行

  4. day6_python之pickle、shelve序列化和反序列化

    pickle.shelve,python私有,支持所有python数据类型 一.pickle dic={'name':'egon','age':18} print(pickle.dumps(dic)) ...

  5. Layer(Web弹窗)

    Layer弹窗的用法: <script src="jQuery的路径"></script> <!-- 你必须先引入jQuery1.8或以上版本 --& ...

  6. git之本地仓库关联远程仓库

    首先新建一个github respository 然后在自己本地新建一个maven项目,里面写点东西 如下图,将自己的项目所在地设置为本地git仓库 将本地仓库与远程关联,首先获取远程仓库的地址,点击 ...

  7. java中的常量和变量

    变量的概念: 占据着内存中的某一个存储区域; 该区域有自己的名称(变量名)和类型(数据类型); 该区域的数据可以在同一类型范围内不断变化; 为什么要定义变量: 用来不断的存放同一类型的常量,并可以重复 ...

  8. C# 标准性能测试

    经常我写一个类,作为一个工具类,小伙伴会问我这个类的性能,这时我就需要一个标准的工具进行测试. 本文告诉大家如何使用 benchmarkdotnet 做测试. 现在在 github 提交代码,如果有小 ...

  9. H3C 更新发送全部路由表浪费网络资源

  10. 140种Python标准库、第三方库和外部工具

    导读:Python数据工具箱涵盖从数据源到数据可视化的完整流程中涉及到的常用库.函数和外部工具.其中既有Python内置函数和标准库,又有第三方库和工具. 这些库可用于文件读写.网络抓取和解析.数据连 ...