ACM北大暑期课培训第三天
今天讲的内容是深搜和广搜
深搜(DFS)
从起点出发,走过的点要做标记,发现有没走过的点,就随意挑一个往前走,走不 了就回退,此种路径搜索策略就称为“深度优先搜索”,简称“深搜”。
- bool Dfs(V) {
- if( V 为终点)
- return true;
- if( V 为旧点
- )
- return false;
- 将
- V标记为旧点
- ;
- 对和
- V相邻的每个节点U {
- if( Dfs(U) == true)
- return true;
- }
- return false;
- }
- int main()
- {
- 将所有点都标记为新点;
- 起点 =
- 终点 =
- cout << Dfs(起点);
- }
判断从 V出发是否能走到终点:
用的时候注意剪枝:最优性剪枝 和 可行性剪枝
用深搜找最优路径时用最优性剪枝:搜索过程中总长度大于或等于之前所求得的最优解则剪掉。
另一种通用的最优性剪枝思想 ---保存中间计算结果用于最优性剪枝(用空间换时间)
可行性剪枝是先判断出这个条件下是否可行,不可行则直接返回。
两种剪枝可以一起使用。
运用剪枝时复杂度不好估计
搜索顺序 : 一个事若由多个无关步骤组成,应先尝试选择少的 ,选择少的正确率高。
ps:用邻接表存图 (可用vector)此时遍历的时间复杂度为 O(n+e)n为节点数目,e为边数目
若用邻接矩阵遍历的时间复杂度为O(n2)
ps:节省时间的方法:看循环是否能提前break;
3.POJ 1724 ROADS
4.POJ 1190 生日蛋糕
广搜(BFS)
广搜就是一层一层搜。所需要的存储空间较大。一般用队列来存节点。
要注意初始状态和目标状态。注意判重
一般状态关系到几个参数判重数组就定义几维。(牵扯到结构体的定义)
若在你选定的同一状态下会出现不同结果,则考虑的情况少了,需要增加判断参数/维数
若要求输出过程则要记录父节点。
多组时,为防止时间超限可以采用:
1.双向广搜(DBFS) :从两个方向以广度优先的顺序同时扩展
2.预处理 (把所有情况都列出来)
3.A*算法
例题:1.POJ 3278 Catch That Cow
2.POJ 3984 迷宫问题
3.OpenJ_Bailian 4116 拯救行动
4.OpenJ_Bailian 4115 鸣人和佐助
5.OpenJ_Bailian 4130 Saving Tang Monk
6.POJ 1077 Eight
7.HDU 1043 Eight (多组)
深搜和广搜的比较:
1.广搜一般用于状态表示比较简单、求最优策略的问题
优点:是一种完备策略,即只要问题有解,它就一定可以找到解 。并且,广度优先搜索找到的解,还一定是路径最短的解。
缺点:盲目性较大,尤其是当目标节点距初始节点较远时,将产生许多无用的节点,因此其搜索效率较低。需要保存所有扩展出的状态,占用的空间大 2.深搜几乎可以用于任何问题
只需要保存从起始状态到当前状态路径上的节点
3.根据题目要求凭借自己的经验和对两个搜索的熟练程度做出选择
双向广度优先搜索(DBFS)
DBFS算法是对BFS算法的一种扩展。
BFS算法从起始节点以广度优先的顺序不断扩展,直到遇到目的节点
DBFS算法从两个方向以广度优先的顺序同时扩展, 一个是从起始节点开始扩展,另一个是从目的节点扩展,直到一个扩展队列中出现另外一个队列中已经扩展的节点,也就相当于两个扩展方向出现了交点,那 么可以认为我们找到了一条路径。
比较:
1.DBFS算法相对于BFS算法来说,由于采用了双向扩展的方式,搜索树的宽度得到了明显的减少,时间复杂度和空间复杂度上都有提高!
2.假设1个结点能扩展出n个结点,单向搜索要m层能找到答案,那 么扩展出来的节点数目就是: (1-n m)/(1-n)
3.双向广搜,同样是一共扩展m层,假定两边各扩展出m/2层,则总 结点数目 2 * (1-n m/2)/(1-n)
4.每次扩展结点总是选择结点比较少的那边进行扩展,并不是机械的两边交替。
DBFS的框架:需要两个标志序列,分别记录节点是否出现在两个队列中
- void dbfs()
- {
- . 将起始节点放入队列q0,将目标节点放入队列q1;
- . 当两个队列都未空时,作如下循环:
- ) 如果队列q0里的节点比q1中的少,则扩展队列q0;
- ) 否则扩展队列q1
- . 如果队列q0未空,不断扩展q0直到为空;
- . 如果队列q1未空,不断扩展q1直到为空;
- }
- int expand(i) //其中i为队列的编号,0或1
- {
- 取队列qi的头结点H;
- 对H的每一个相邻节点adj:
- 如果adj已经在队列qi之中出现过,则抛弃adj;
- 如果adj在队列qi中未出现过,则:
- ) 将adj放入队列qi;
- ) 如果adj 曾在队列q1-i中出现过, 则:输出找到的路径
- }
ACM北大暑期课培训第三天的更多相关文章
- ACM北大暑期课培训第一天
今天是ACM北大暑期课开课的第一天,很幸运能参加这次暑期课,接下来的几天我将会每天写博客来总结我每天所学的内容.好吧下面开始进入正题: 今天第一节课,郭炜老师给我们讲了二分分治贪心和动态规划. 1.二 ...
- ACM北大暑期课培训第七天
昨天没时间写,今天补下. 昨天学的强连通分支,桥和割点,基本的网络流算法以及Dinic算法: 强连通分支 定义:在有向图G中,如果任意两个不同的顶点 相互可达,则称该有向图是强连通的. 有向图G的极大 ...
- ACM北大暑期课培训第六天
今天讲了DFA,最小生成树以及最短路 DFA(接着昨天讲) 如何高效的构造前缀指针: 步骤为:根据深度一一求出每一个节点的前缀指针.对于当前节点,设他的父节点与他的边上的字符为Ch,如果他的父节点的前 ...
- ACM北大暑期课培训第五天
今天讲的扫描线,树状数组,并查集还有前缀树. 扫描线 扫描线的思路:使用一条垂直于X轴的直线,从左到右来扫描这个图形,明显,只有在碰到矩形的左边界或者右边界的时候,这个线段所扫描到的情况才会改变, ...
- ACM北大暑期课培训第二天
今天继续讲的动态规划 ... 补充几个要点: 1. 善于利用滚动数组(可减少内存,用法与计算方向有关) 2.升维 3.可利用一些数据结构等方法使代码更优 (比如优先队列) 4.一般看到数值小的 (十 ...
- ACM北大暑期课培训第八天
今天学了有流量下界的网络最大流,最小费用最大流,计算几何. 有流量下界的网络最大流 如果流网络中每条边e对应两个数字B(e)和C(e), 分别表示该边上的流量至少要是B(e),最多 C(e),那么,在 ...
- ACM北大暑期课培训第四天
今天讲了几个高级搜索算法:A* ,迭代加深,Alpha-Beta剪枝 以及线段树 A*算法 启发式搜索算法(A算法) : 在BFS算法中,若对每个状态n都设定估价函数 f(n)=g(n)+h(n) ...
- 牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献)
牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献) 链接:https://ac.nowcoder.com/acm/contest/141/H来源:牛客网 Eddy ha ...
- 2019暑期北航培训—预培训作业-IDE的安装与初步使用(Visual Studio版)
这个作业属于那个课程 2019北航软件工程暑期师资培训 这个作业要求在哪里 预培训-IDE的安装与初步使用(Visual Studio版) 我在这个课程的目标是 提高自身实际项目实践能力,掌握帮助学生 ...
随机推荐
- 2019-6-23-修复-dotnet-Core-缺SDK编译失败
title author date CreateTime categories 修复 dotnet Core 缺SDK编译失败 lindexi 2019-6-23 10:55:9 +0800 2019 ...
- 在 Jenkins Windows Agent 节点上执行 Shell 命令
Jenkins 在 Windows agent 上执行shell 命令,听起来很有意思,以下方法可以在 Jenkins 中执行一些简单的 shell 脚本,如果是复杂脚本就交给 Linux agent ...
- Python--day66--内容回顾
3,python中的大小比较和js中的大小比较规则: python中a>b>c,就是先比较a>b,然后再比较b>c,都为true的话就返回true: js中的a>b> ...
- Python--day49--ORM框架SQLAlchemy之relationship的使用(有时间要从新看,这里状态不好,没有仔细听)
小贴士: 迭代器:只有在循环的时候才一个一个往外拿 relationship
- HDU 1568
- - 我自己开始以为是数值范围是1到100000000.... 搞了半天才发现是斐波那契数列的项数1到100000000 坑爹.!! 不会,只能看网上大牛的题解. 具体解释请看:http://www ...
- Spring Security 中的 Bcrypt
最近在写用户管理相关的微服务,其中比较重要的问题是如何保存用户的密码,加盐哈希是一种常见的做法.知乎上有个问题大家可以先读一下: 加盐密码保存的最通用方法是? 对于每个用户的密码,都应该使用独一无二的 ...
- MySQL Workbench: mysqldump version mismatch
Windows10 64bit系统下,步骤就是: Edit --> preferences --> Administrator --> Path to mysqldump tool: ...
- 北京信息科技大学第十一届程序设计竞赛E-- kotori和素因子(深搜)
链接:https://ac.nowcoder.com/acm/contest/940/E 题目描述 kotori拿到了一些正整数.她决定从每个正整数取出一个素因子.但是,kotori有强迫症,她不允许 ...
- C语言 屏幕截图 (GDI)
截取全屏幕 #include <windows.h> void echo(CHAR *str); int CaptureImage(HWND hWnd, CHAR *dirPath, ...
- apply call 用法
1.对象转数组 tips 先看怎么用 再研究方法原理 var obj = { 0: 'qian', 1: 'long', 2: 'chu', 3: 'tian', ...