#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cmath>
#include <cstring>
#define inf 2147483647
#define P 998244353
#define p(a) putchar(a)
#define For(i,a,b) for(long long i=a;i<=b;++i) using namespace std;
long long T;
long long n,a,b,c;
long long i2 = , i6 = ;//这是2,6在%P意义下的逆元
struct data{
long long f,g,h;
data calc(long long n,long long a,long long b,long long c){
long long ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + , n21 = n * + ;
data d;
if (a == ) {
d.f = bc * n1 % P;
d.g = bc * n % P * n1 % P * i2 % P;
d.h = bc * bc % P * n1 % P;
return d;
} if (a >= c || b >= c){
d.f = n * n1 % P * i2 % P * ac % P + bc * n1 % P;
d.g = ac * n % P * n1 % P * n21 % P * i6 % P + bc * n % P * n1 % P * i2 % P;
d.h = ac * ac % P * n % P * n1 % P * n21 % P * i6 % P +
bc * bc % P * n1 % P + ac * bc % P * n % P * n1 % P;
d.f %= P, d.g %= P, d.h %= P; data e = calc(n, a % c, b % c, c); d.h += e.h + * bc % P * e.f % P + * ac % P * e.g % P;
d.g += e.g, d.f += e.f;
d.f %= P, d.g %= P, d.h %= P;
return d;
} data e = calc(m - , c, c - b - , a);
d.f = n * m % P - e.f, d.f = (d.f % P + P) % P;
d.g = m * n % P * n1 % P - e.h - e.f, d.g = (d.g * i2 % P + P) % P;
d.h = n * m % P * (m + ) % P - * e.g - * e.f - d.f;
d.h = (d.h % P + P) % P;
return d;
}
}ans; void in(long long &x){
long long y=;char c=getchar();x=;
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c<=''&&c>=''){ x=(x<<)+(x<<)+c-'';c=getchar();}
x*=y;
}
void o(long long x){
if(x<){p('-');x=-x;}
if(x>)o(x/);
p(x%+'');
} signed main(){
in(T);
while(T--){
in(n);in(a);in(b);in(c);
ans=ans.calc(n,a,b,c);
o(ans.f);p(' ');o(ans.h);p(' ');o(ans.g);p('\n');
}
return ;
}

类欧几里德算法(洛谷 P5170的更多相关文章

  1. Luogu4433:[COCI2009-2010#1] ALADIN(类欧几里德算法)

    先套用一个线段树维护离散化之后的区间的每一段的答案 那么只要考虑怎么下面的东西即可 \[\sum_{i=1}^{n}(A\times i \ mod \ B)\] 拆开就是 \[\sum_{i=1}^ ...

  2. 差分约束算法————洛谷P4878 [USACO05DEC] 布局

    题目: 不难看出题意主要是给出ml+md个格式为xi-xj<=ak的不等式,xi-xj为i,j俩头牛的距离,要我们求x1-xn的最大值. 经过上下加减我们可以将这几个不等式化成x1-xn< ...

  3. 洛谷P5170 【模板】类欧几里得算法(数论)

    传送门 此题剧毒,公式恐惧症患者请直接转去代码→_→ 前置芝士 基本数论芝士 题解 本题就是要我们求三个函数的值 \[f(a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac ...

  4. UOJ#42. 【清华集训2014】Sum 类欧几里德算法

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ42.html 题解 首先我们把式子改写一下: $$(-1)^{\lfloor a\rfloor} \\=1 ...

  5. 2018牛客网暑假ACM多校训练赛(第十场)H Rikka with Ants 类欧几里德算法

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round10-H.html 题目传送门 - https://www.n ...

  6. BZOJ2987:Earthquake(类欧几里德算法)

    Sol 设 \(n=\lfloor\frac{c}{a}\rfloor\) 问题转化为求 \[\sum_{i=0}^{n}\lfloor\frac{c-ax}{b}\rfloor+1=\sum_{i= ...

  7. 洛谷 P3805 【模板】manacher算法

    洛谷 P3805 [模板]manacher算法 洛谷传送门 题目描述 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 字符串长度为n 输入格式 一行小写英文字符 ...

  8. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  9. 洛谷P2891 Dining P1402 酒店之王【类二分图匹配】题解+代码

    洛谷P2891 Dining P1402 酒店之王[类二分图匹配]题解+代码 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的 ...

随机推荐

  1. 数据结构C++版-栈

    一.概念 二.应用实例 1.进制转换 #include <stdlib.h> #include <iostream> #include <string> #incl ...

  2. [zz]winform 窗体关闭事件

    注册窗体关闭事件: 在Form1.Designer.cs 文件中添加: this.FormClosing += new System.Windows.Forms.FormClosingEventHan ...

  3. MPU-6000 与 MPU-6050

    VLOGIC 是什么呢?

  4. 让BB-Black通过usb0上网

    Frm: http://blog.csdn.net/jamselaot/article/details/17080011 既然我们已经用usb0作为主机和BB-Black之间的网络通道了,再进一步,就 ...

  5. 2D转换中的translate里调用matrix()的用法

    一开始,经常看到大佬们用matrix的方法,当时完全不会,不知道如何写.到后面,发现都是这样用,导致只能去认真看一下这个东西怎么用,要不然完全跟不上的节奏啊.因此建议大家去看下这篇文章,写的挺不错的, ...

  6. char型指针的初始化问题

    方法一:char *str = “abcd“区别在于你这里赋给str的是一个常量字符串,存储在静态全局区,因此str也成了一个指向常量的指针,不能通过指针对常量内容做任何更改,例如*(ch+2)='y ...

  7. 《转》python对象

    http://www.cnblogs.com/BeginMan/p/3160044.html 一.学习目录 1.pyhton对象 2.python类型 3.类型操作符与内建函数 4.类型工厂函数 5. ...

  8. UVA Ananagrams /// map set

    https://vjudge.net/problem/UVA-156 题目大意: 输入文本,找出所有满足条件的单词——该单词不能通过字母重排而得到输入的文本中的另外一个单词. 在判断是否满足条件时,字 ...

  9. LeetCode 67. Add Binary【个位补0,不必对齐】【easy】

    Given two binary strings, return their sum (also a binary string). The input strings are both non-em ...

  10. springboot中参数校验

    <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring- ...