RDD(Resilient Distributed Dataset)
 
abstract class RDD[T: ClassTag](
    @transient private var _sc: SparkContext,
    @transient private var deps: Seq[Dependency[_]]
  ) extends Serializable with Logging
 
 
1.RDD是一个抽象类(不能直接使用,子类实现抽象方法后才能用)
2.带泛型的,可以支持多种类型:String、Person、User
RDD:Resilient Distributed Dataset 弹性 分布式 数据集
 
Represents an immutable,(不可变)
 partitioned collection of elements (分区)
that can be operated on in parallel   (并行计算)
 
 Internally, each RDD is characterized by five main properties:
 *
 *  - A list of partitions
 *  - A function for computing each split
 *  - A list of dependencies on other RDDs
    rdd1=>rdd2=>rdd3
 *  - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
 *  - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
 *    an HDFS file)   数据在哪优先把作业调度到数据所在结点计算:移动数据不如移动计算
 
五大特性源码体现
 
 def compute(split: Partition, context: TaskContext): Iterator[T]    特性二
 
protected def getPartitions: Array[Partition] 特性一
 
protected def getDependencies: Seq[Dependency[_]] = deps  特性三
 
protected def getPreferredLocations(split: Partition): Seq[String] = Nil   特性五
 
val partitioner: Option[Partitioner] = None    特性四
 
 
 
 
    
 

1.spark核心RDD特点的更多相关文章

  1. Spark核心—RDD初探

    本文目的     最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关 ...

  2. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  3. Spark核心——RDD

    Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:R ...

  4. Spark核心RDD:combineByKey函数详解

    https://blog.csdn.net/jiangpeng59/article/details/52538254 为什么单独讲解combineByKey? 因为combineByKey是Spark ...

  5. Spark的核心RDD(Resilient Distributed Datasets弹性分布式数据集)

    Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集)  原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7 ...

  6. Spark之RDD容错原理及四大核心要点

    一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部 ...

  7. spark系列-2、Spark 核心数据结构:弹性分布式数据集 RDD

    一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象, ...

  8. [Spark] Spark的RDD编程

    本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的 ...

  9. 关于Spark中RDD的设计的一些分析

    RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...

随机推荐

  1. git rm --cached (解决:modified: .idea/workspace.xml,git idea 操作完之后不能pull)

    错误解决:modified: .idea/workspace.xml 这个错误是本地的.idea提交到了远端. 解决办法: .gitignore文件加上: .dea/workspace.xml 可是. ...

  2. RoadFlow2.7.5 MyController.cs

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  3. Android Telephony分析(五) ---- TelephonyRegistry详解

    本文紧接着上一篇文章<Android Telephony分析(四) —- TelephonyManager详解 >的1.4小节.从TelephonyRegistry的大部分方法中: 可以看 ...

  4. java通过传送地址获取坐标

    package com.action; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputS ...

  5. 好文 | MySQL 索引B+树原理,以及建索引的几大原则

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 来源:小宝鸽 blog.csdn.net/u013142781/article/details/51706790 MySQL ...

  6. MongoDB + Spark结合使用方案

    MongoDB上海的活动已经结束快1个月了,我们再来回顾一下TJ在大会上进行的精彩分享吧~ MongoDB + Spark: 完整的大数据计算解决方案. Spark介绍 按照官方的定义,Spark 是 ...

  7. python ORM框架:SqlAlchemy

    ORM,对象关系映射,即Object Relational Mapping的简称,通过ORM框架将编程语言中的对象模型与数据库的关系模型建立映射关系,这样做的目的:简化sql语言操作数据库的繁琐过程( ...

  8. sql(7)

    EXCEPT是指在第一个集合中存在,但是不存在于第二个集合中的数据. EXCEPT 子句/运算符用于将两个 SELECT 语句结合在一起,并返回第一个 SELECT 语句的结果中那些不存在于第二个 S ...

  9. Codeforces Round #563 (Div. 2) F. Ehab and the Big Finale

    后续: 点分治标程 使用father数组 比使用vis数组优秀(不需要对vis初始化) https://codeforces.com/problemset/problem/1174/F https:/ ...

  10. python: 函数递归与尾递归

    如果一个函数在内部调用自己,那么这个函数就是递归函数. 例如一个阶乘函数:fact(n)=n! ,其实可以写成 fact(n)=n x fact(n-1). fact(n) 以递归的方式可以表示为: ...