题目:(转自 https://www.luogu.com.cn/problem/P1541

题目描述

乌龟棋的棋盘是一行NN个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第NN格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。

乌龟棋中MM张爬行卡片,分成4种不同的类型(MM张卡片中不一定包含所有44种类型的卡片,见样例),每种类型的卡片上分别标有1,2,3,41,2,3,4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。

游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。

很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。

现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?

输入格式

每行中两个数之间用一个空格隔开。

第11行22个正整数N,MN,M,分别表示棋盘格子数和爬行卡片数。

第22行NN个非负整数,a_1,a_2,…,a_Na1​,a2​,…,aN​,其中a_iai​表示棋盘第ii个格子上的分数。

第33行MM个整数,b_1,b_2,…,b_Mb1​,b2​,…,bM​,表示M张爬行卡片上的数字。

输入数据保证到达终点时刚好用光MM张爬行卡片。

输出格式

11个整数,表示小明最多能得到的分数。

输入输出样例
输入 #1复制

9 5
6 10 14 2 8 8 18 5 17
1 3 1 2 1
输出 #1复制

73
说明/提示

每个测试点1s1s

小明使用爬行卡片顺序为1,1,3,1,2

1,1,3,1,2,得到的分数为6+10+14+8+18+17=736+10+14+8+18+17=73。注意,由于起点是11,所以自动获得第11格的分数66。

对于30\%30%的数据有1≤N≤30,1≤M≤121≤N≤30,1≤M≤12。

对于50\%50%的数据有1≤N≤120,1≤M≤501≤N≤120,1≤M≤50,且44种爬行卡片,每种卡片的张数不会超过2020。

对于100\%100%的数据有1≤N≤350,1≤M≤1201≤N≤350,1≤M≤120,且44种爬行卡片,每种卡片的张数不会超过4040;0≤a[i]≤100,1≤i≤N,1≤b[i]≤4,1≤i≤M0≤ai​≤100,1≤i≤N,1≤b[i]≤4,1≤i≤M。

很明显,暴力dfs是一个不错的选择,如若是在考试,天梦在这里奉告读者结合实际情况打暴力。但由于是一道dp,我们今天就讲讲正解。

思路:

在做这道题时,我首先这样想:把起始点标注成s和t,在中间找一点i保证 f[s][i] 和 f[i][t] 最优,通过 f[i][j]=f[s][i]+f[i][t]这个式子来让f[s][t]最优,但可以很快证明这个想法是错误的,因为设我们能用的总牌数为K,

前一段(即f[s][i])为了得到最优解会用a张牌,后一段(即f[i][t])为了得到最优解会用b张牌,无法保证a+b=K。

除了枚举分段点,我们还能枚举什么? 用的牌数。接下来我来给大家做简单介绍。

介绍:

设f[i][j][p][k]表示用了i张走一步的牌(下面简写),j张2,p张3,k张4,则我们理想的最优解应该是他走到终点时,即所有牌都用完时。我们以样例为例:f【3】【1】【1】【0】为我们所求的最优解,因为上一步可能走了1格,2格,3格,4格(由于题目限制,4在样例中牌数为0)

那么最优解可以由f[2][1][1][0],f[3][0][1][0],f[3][1][0][0] 得到

一般的f[i][j][k][p]可以由f[i-1][j][k][p], f[i][j-1][k][p], f[i][j][k-1][p], f[i][j][k][p-1]得到,如果读者接着往上推(试试推推样例) 会发现最终的最优解都是由f[0][0][0][0]得到的,它的值是什么?一格都没走——起点值。

下面,让我们来看看代码:

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
#define N 400
#define ll long long
using namespace std;
int n,m;
int a[N];
int sum[];
int f[][][][];
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++)
{
cin>>a[i];
}
for(int i=;i<=m;i++)
{
int x;
cin>>x;
sum[x]++;
}//计算牌数
//memset(f,0,sizeof(f));
f[][][][]=a[];
//cout<<sum[1]<<" "<<sum[2]<<" "<<sum[3]<<" "<<sum[4]<<endl<<endl;
for(int i=;i<=sum[];i++)
{
for(int j=;j<=sum[];j++)
{
for(int k=;k<=sum[];k++)
{
for(int p=;p<=sum[];p++)
{
if(!(i==&&j==&&k==&&p==))
{
int ans1,ans2,ans3,ans4;
if(i-<) ans1=; else ans1=f[i-][j][k][p];
if(j-<) ans2=; else ans2=f[i][j-][k][p];
if(k-<) ans3=; else ans3=f[i][j][k-][p];
if(p-<) ans4=; else ans4=f[i][j][k][p-];//防止数组下溢
f[i][j][k][p]=max(max(ans1,ans2),max(ans3,ans4))+a[i*+j*+k*+p*+];//加上这个位置的格子值,别忘了加1
}
}
}
}
}
cout<<f[sum[]][sum[]][sum[]][sum[]];
return ;
}

dp——洛谷 P1541 乌龟棋 —— by hyl天梦的更多相关文章

  1. 洛谷 p1541乌龟棋

    洛谷 p1541乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行NN个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第NN格是终点,游戏 ...

  2. 洛谷P1541 乌龟棋(四维DP)

    To 洛谷.1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游 ...

  3. 洛谷P1541 乌龟棋 [2010NOIP提高组]

    P1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家 ...

  4. codevs1068 乌龟棋==洛谷P1541 乌龟棋

    P1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家 ...

  5. 洛谷 P1541 乌龟棋 Label:O(n^4)的dp

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  6. [洛谷P1541] 乌龟棋

    洛谷题目链接:乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩 ...

  7. [NOIP2010] 提高组 洛谷P1541 乌龟棋

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  8. 洛谷 P1541 乌龟棋

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  9. 洛谷 P1541 乌龟棋 —— DP

    题目:https://www.luogu.org/problemnew/show/P1541 DP. 代码如下: #include<iostream> #include<cstdio ...

随机推荐

  1. 备战省赛组队训练赛第六场(UPC)

    传送门 外来博客题解1:戳这里 外来博客题解2:戳这里 CRWG全方位题解:戳这里

  2. dotnet 获取指定进程的输入命令行

    本文告诉大家如何在 dotnet 获取指定的进程的命令行参数 很多的程序在启动的时候都需要传入参数,那么如何拿到这些程序传入的参数? 我找到两个方法,一个需要引用 C++ 库支持 x86 和 x64 ...

  3. WPF 设置纯软件渲染

    最近看到有小伙伴说 WPF 使用硬件渲染,如何让 WPF 不使用硬件渲染,因为他觉得性能太好了.万一这个版本发布了,产品经理说下个版本要提升性能就不好了.于是就找到一个快速的方法,让程序不使用硬件渲染 ...

  4. 对“TD信息树”的使用体验

    在本次同2017级学长进行的软件交流会上,我们有幸使用学长们开发的软件与成果,进过27个不尽相同的软件的使用,让我初步意识到了学习软件工程这门学科的实用价值.最终我选择了"TD信息树&quo ...

  5. tcp短连接和长连接

    1. TCP连接 当网络通信时采用TCP协议时,在真正的读写操作之前,server与client之间必须建立一个连接,当读写操作完成后,双方不再需要这个连接时它们可以释放这个连接,连接的建立是需要三次 ...

  6. Docker zookeeper 集群 for Docker desktop (win)

    docker desktop win10 环境下的 zookeeper 容器创建并运及可能出现的问题: https://github.com/poazy/boazy-learn/blob/master ...

  7. django框架(1)

    一什么是web框架? 框架,即framework,特指为解决一个开放性问题而设计的具有一定约束性的支撑结构,使用框架可以帮你快速开发特定的系统,简单地说,就是你用别人搭建好的舞台来做表演. 对于所有的 ...

  8. 数据库基础之Mysql

    数据库的简介 数据库 数据库(database,DB)是指长期存储在计算机内的,有组织,可共享的数据的集合.数据库中的数据按一定的数学模型组织.描述和存储,具有较小的冗余,较高的数据独立性和易扩展性, ...

  9. 使用Miniconda安装Scrapy遇到的坑

    最近在看小甲鱼的书,学习学习爬虫,其中有一块是通过Miniconda3安装Scrapy,结果却遇到了下面的错误:fatal error in launcher:unable to create pro ...

  10. 0011 开发者工具(chrome)

    此工具是我们的必备工具,以后代码出了问题 我们首先第一反应就是: "按F12"或者是 "shift+ctrl+i" 打开 开发者工具. 菜单: 右击网页空白出- ...