dfs - 概率
2 seconds
256 megabytes
standard input
standard output
There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.
The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.
Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the cities connected by the i-th road.
It is guaranteed that one can reach any city from any other by the roads.
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .
4
1 2
1 3
2 4
1.500000000000000
5
1 2
1 3
3 4
2 5
2.000000000000000
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
题目大意:
从第一个城市开始出发,只能走和他相连通的地方,并且走过的路不能再走,走的每条路的边的权值都为1,问最终走的路的期望是多少?并且此题中的图是不连通的。
运用dfs 去搜一遍树 , 当搜到叶子节点则返回 ,对一个点的期望如何计算, 1 + 该点所有孩子的期望和 / 孩子总数 。
所以我们计算单个节点概率的公式就是
if(该节点非叶子结点) p =1.0+sum (子节点的概率之和)/ k(子节点个数)
代码示例 :
const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
double p = 0; for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue;
f[x]++;
dfs(to, x);
int len = ve[to].size(); if (len == 0) p = 0;
else p = f[to]/(1.0*len);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b; for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/ve[1].size());
return 0;
}
思路二 :
因为题目只是让算了一个期望,那么我就可以去计算每个点的期望然后往上累加。
const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue; double p = 0;
f[x]++;
dfs(to, x);
int len = ve[to].size();
if (len == 1) p = 0;
else p = f[to]/(len-1);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b;
if (n == 1) {printf("0\n"); return 0;}
for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/(ve[1].size()));
return 0;
}
dfs - 概率的更多相关文章
- UVA 11181 dfs 概率
N friends go to the local super market together. The probability of their buying something from them ...
- CodeForces - 476B -Dreamoon and WiFi(DFS+概率思维)
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands throug ...
- Linux 集群
html,body { } .CodeMirror { height: auto } .CodeMirror-scroll { } .CodeMirror-lines { padding: 4px 0 ...
- noip2017考前整理(未完)
快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...
- 【备考06组01号】第四届蓝桥杯JAVA组A组国赛题解
1.填算式 (1)题目描述 请看下面的算式: (ABCD - EFGH) * XY = 900 每个字母代表一个0~9的数字,不同字母代表不同数字,首位不能为0. 比如 ...
- D. Puzzles(Codeforces Round #362 (Div. 2))
D. Puzzles Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 ...
- BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...
- Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)
688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...
- UVA1637Double Patience(概率 + 记忆化搜索)
训练指南P327 题意:36张牌分成9堆, 每堆4张牌.每次拿走某两堆顶部的牌,但需要点数相同.如果出现多种拿法则等概率的随机拿. 如果最后拿完所有的牌则游戏成功,求成功的概率. 开个9维数组表示每一 ...
随机推荐
- windows下如何安装Composer?
Composer 不是一个包管理器,它仅仅是一个依赖管理工具.它涉及 "packages" 和 "libraries",但它在每个项目的基础上进行管理,在你项目 ...
- layer/layui弹出层插件bug
<button class="layui-btn" lay-submit lay-filter="formDemo" id="layui-btn ...
- Sphinx中文入门指南
http://www.sphinxsearch.org/sphinx-tutorial 1.简介 1.1.Sphinx是什么 1.2.Sphinx的特性 1.3.Sphinx中文分词 2.安装配置实例 ...
- 浅谈LOG日志的写法
文章来源于公司的大牛 1 Log的用途 不管是使用何种编程语言,日志输出几乎无处不再.总结起来,日志大致有以下几种用途: l 问题追踪:通过日志不仅仅包括我们程序的一些bug,也可以在安装配置时,通 ...
- JAVA核心知识点--打包 FatJar 方法小结
目录 什么是 FatJar 三种打包方法 1. 非遮蔽方法(Unshaded) 2. 遮蔽方法(Shaded) 3. 嵌套方法(Jar of Jars) 小结 参考阅读 原文地址:https://yq ...
- 浅谈javaScript数据类型、变量、内存之间的关系,文末有图解
一.变量是没有类型的 在JavaScript中,定义变量的方法是“var 变量名=变量值”,无论这个变量要给他赋值为一个数字.字符串还是数组,他的类型都不需要声明.也就是说如果我只声明了一个变量“va ...
- WPF 元素裁剪 Clip 属性
本文介绍如何在 WPF 使用 Clip 裁剪元素 在 WPF 的 UIElement 提供了 Clip 属性,这个属性默认是空,但是如果设置了这个属性就会对元素进行裁剪 这个属性是一个 Geometr ...
- Scala中的函数表达式
最近看Spark的东西,由于之前没有接触过lambda函数表达式,所以搜了点资料,特地纪录在此 Scala中的Lambda表达式 在函数式编程中,函数是基本的构造块.Scala融合了java中的面向对 ...
- vue-learning:12 - 2 - 区分:outerHTML - innerTHML - outerText - innerText - textContent
区分:outerHTML - innerTHML - outerText - innerText - textContent 获取值 <div id="outer"> ...
- blink接收器
blink: [autorun] OPEN="AutoInst.exe" [AskRebootTitle] Dlg1=System Settings Change Dlg2=št ...