C. Journey
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.

Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.

Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.

Input

The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.

Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the cities connected by the i-th road.

It is guaranteed that one can reach any city from any other by the roads.

Output

Print a number — the expected length of their journey. The journey starts in the city 1.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
Input
4
1 2
1 3
2 4
Output
1.500000000000000
Input
5
1 2
1 3
3 4
2 5
Output
2.000000000000000
Note

In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.

In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.

题目大意:

  从第一个城市开始出发,只能走和他相连通的地方,并且走过的路不能再走,走的每条路的边的权值都为1,问最终走的路的期望是多少?并且此题中的图是不连通的。

运用dfs 去搜一遍树 , 当搜到叶子节点则返回 ,对一个点的期望如何计算, 1 + 该点所有孩子的期望和 / 孩子总数 。

所以我们计算单个节点概率的公式就是
if(该节点非叶子结点) p =1.0+sum (子节点的概率之和)/ k(子节点个数)


代码示例 :
const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
double p = 0; for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue;
f[x]++;
dfs(to, x);
int len = ve[to].size(); if (len == 0) p = 0;
else p = f[to]/(1.0*len);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b; for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/ve[1].size());
return 0;
}

思路二 :

  因为题目只是让算了一个期望,那么我就可以去计算每个点的期望然后往上累加。

const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue; double p = 0;
f[x]++;
dfs(to, x);
int len = ve[to].size();
if (len == 1) p = 0;
else p = f[to]/(len-1);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b;
if (n == 1) {printf("0\n"); return 0;}
for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/(ve[1].size()));
return 0;
}

dfs - 概率的更多相关文章

  1. UVA 11181 dfs 概率

    N friends go to the local super market together. The probability of their buying something from them ...

  2. CodeForces - 476B -Dreamoon and WiFi(DFS+概率思维)

    Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands throug ...

  3. Linux 集群

    html,body { } .CodeMirror { height: auto } .CodeMirror-scroll { } .CodeMirror-lines { padding: 4px 0 ...

  4. noip2017考前整理(未完)

    快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...

  5. 【备考06组01号】第四届蓝桥杯JAVA组A组国赛题解

    1.填算式 (1)题目描述     请看下面的算式:     (ABCD - EFGH) * XY = 900     每个字母代表一个0~9的数字,不同字母代表不同数字,首位不能为0.     比如 ...

  6. D. Puzzles(Codeforces Round #362 (Div. 2))

    D. Puzzles Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 ...

  7. BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)

    题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...

  8. Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)

    688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...

  9. UVA1637Double Patience(概率 + 记忆化搜索)

    训练指南P327 题意:36张牌分成9堆, 每堆4张牌.每次拿走某两堆顶部的牌,但需要点数相同.如果出现多种拿法则等概率的随机拿. 如果最后拿完所有的牌则游戏成功,求成功的概率. 开个9维数组表示每一 ...

随机推荐

  1. vscode编辑如何保存时自动校准eslint规范

    在日常开发中,一个大点的项目会有多人参与,那么可能就会出现大家的代码风格不一,各显神通,这个时候就要祭出我们的eslint. 在这之前磨刀不误砍柴工,我们先来配置一下我们的代码编辑工具,如何在vsco ...

  2. Vue v-if和v-show的使用.区别

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. hiveservice简介

    由于实验的须要,这两天就搭了个Hive,简单记录一下: 平台:OS:Ubuntu Kylin 14.04 JAVA:Java 1.8.0_25 HADOOP:Hadoop 2.4.0 HIVE:Hiv ...

  4. router-link-active的作用

    如上图所示,创建了3个路由跳转选项,css实现后的效果如下 ↓↓↓ 当我切换“电影” “影院” “我的” 三个路由选项时,文字由黑色变成红色 此时可用vue自带的 router-link-active ...

  5. 2018-10-19-jekyll-添加-Valine-评论

    title author date CreateTime categories jekyll 添加 Valine 评论 lindexi 2018-10-19 09:10:40 +0800 2018-2 ...

  6. 【38.63%】【hdu 3047】Zjnu Stadium

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  7. Windows Server Core Remote Manage Hyper-V

    原帖:https://serverfault.com/questions/852144/how-do-i-remotely-manage-hyper-v-2016-standalone-via-win ...

  8. 使用Miniconda安装Scrapy遇到的坑

    最近在看小甲鱼的书,学习学习爬虫,其中有一块是通过Miniconda3安装Scrapy,结果却遇到了下面的错误:fatal error in launcher:unable to create pro ...

  9. __str__、__repr__和__format__

    obj.__ str __ ()是面向用户的,该方法将实例转换为一个字符 obj.__ repr __ ()面向程序员,该方法返回一个实例的代码表示形式,通常用来重新构造这个实例,repr()函数返回 ...

  10. OpenSsl库 Rsa的简单使用

    环境的配置可以参考http://www.cnblogs.com/yangyquin/p/5284530.html 网络上传输的数据很容易被抓包,如果不加密,那么网络数 据很容易被窃取,诸如用户名.密码 ...