c50决策树借款风险
Decision Trees/ Machine Learning
Durga Gaddam
August 29, 2016
Objective:
The objective of the article is to identify the risk of a bank loan. In this article we will develop a credit approval model using C5.0 decision trees.
Decision Trees:
Decision Trees is one of the most widely used Machine Learning Algorithm. Terminology used in Decision Trees
- Root node- Beginning of decision tree
- Decision Nodes- Which help in making choices
- Branches- potential outcome of a decision
- Leaf Nodes or Terminal Nodes- Used to terminate the decision.
Decision trees use self-learning process called Recursive Partitioning, or divide and conquer method.
C5.0 Decision tree algorithm:
Entropy:
The algorithm C5.0 uses the technique called entropy, which quantifies the randomness, or disorder within a set of class values
Entropy (S) = ∑ci=1pilog2(pi)∑i=1cpilog2(pi)
Infromation Gain
C5.0 algorithm uses Information gain to split for the data set. The data set is divided into two parts. Split1 and Split2. This method is known as Information Gain
Info Gain(F)= Entropy(S1)- Entropy(S2)
Entropy (S) = \sum_{i=1}^w_i Entropy(p_i)\sum_{i=1}^w_i Entropy(p_i)
Step1: Collecting the Data
Step2: Exploring and preparing the Data
Step3: Training the data model
Step4: Evaluating the model performance
Step1: Improving model performance
Step1: Collecting the Data
The present data is extracted from http://archive.ics.uci.edu/ml/
Step2: Exploring and preparing the Data
##library(ggplot2)
credit <- read.csv("credit.csv")
str(credit)
## 'data.frame': 1000 obs. of 21 variables:
## $ checking_balance : Factor w/ 4 levels "< 0 DM","> 200 DM",..: 1 3 4 1 1 4 4 3 4 3 ...
## $ months_loan_duration: int 6 48 12 42 24 36 24 36 12 30 ...
## $ credit_history : Factor w/ 5 levels "critical","delayed",..: 1 5 1 5 2 5 5 5 5 1 ...
## $ purpose : Factor w/ 10 levels "business","car (new)",..: 8 8 5 6 2 5 6 3 8 2 ...
## $ amount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ savings_balance : Factor w/ 5 levels "< 100 DM","> 1000 DM",..: 5 1 1 1 1 5 4 1 2 1 ...
## $ employment_length : Factor w/ 5 levels "> 7 yrs","0 - 1 yrs",..: 1 3 4 4 3 3 1 3 4 5 ...
## $ installment_rate : int 4 2 2 2 3 2 3 2 2 4 ...
## $ personal_status : Factor w/ 4 levels "divorced male",..: 4 2 4 4 4 4 4 4 1 3 ...
## $ other_debtors : Factor w/ 3 levels "co-applicant",..: 3 3 3 2 3 3 3 3 3 3 ...
## $ residence_history : int 4 2 3 4 4 4 4 2 4 2 ...
## $ property : Factor w/ 4 levels "building society savings",..: 3 3 3 1 4 4 1 2 3 2 ...
## $ age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ installment_plan : Factor w/ 3 levels "bank","none",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ housing : Factor w/ 3 levels "for free","own",..: 2 2 2 1 1 1 2 3 2 2 ...
## $ existing_credits : int 2 1 1 1 2 1 1 1 1 2 ...
## $ job : Factor w/ 4 levels "mangement self-employed",..: 2 2 4 2 2 4 2 1 4 1 ...
## $ dependents : int 1 1 2 2 2 2 1 1 1 1 ...
## $ telephone : Factor w/ 2 levels "none","yes": 2 1 1 1 1 2 1 2 1 1 ...
## $ foreign_worker : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
## $ default : int 1 2 1 1 2 1 1 1 1 2 ...
table(credit$checking_balance)
##
## < 0 DM > 200 DM 1 - 200 DM unknown
## 274 63 269 394
table(credit$savings_balance)
##
## < 100 DM > 1000 DM 101 - 500 DM 501 - 1000 DM unknown
## 603 48 103 63 183
##Here DM indicates currency of Germany Deutsche Marks(DM)
summary(credit$months_loan_duration)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.0 12.0 18.0 20.9 24.0 72.0
summary(credit$amount)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 250 1366 2320 3271 3972 18420
Through this we can observe that the minimum loan duration was 4 and maximum duration was 72
require(ggplot2)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.3.1
qplot(credit$months_loan_duration, xlab="Number of Months", main = "Loan Duration",geom="histogram", binwidth=2)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABUAAAAPACAMAAADDuCPrAAAAsVBMVEUAAAAAADoAAGYAOjoAOpAAZmYAZrYzMzM6AAA6ADo6Ojo6kJA6kNtNTU1NTW5NTY5NbqtNjshZWVlmAABmZgBmZmZmkJBmtrZmtttmtv9uTU1uq+SOTU2Oq6uOyP+QOgCQkLaQ27aQ2/+rbk2rjk2r5P+2ZgC2kDq2tma2///Ijk3I///bkDrb///kq27k5Kvk///r6+v/tmb/yI7/25D/5Kv//7b//8j//9v//+T////PkCRhAAAACXBIWXMAAB2HAAAdhwGP5fFlAAAgAElEQVR4nO2da2Mj55FeaceRlc3QkqLcNFKkzSpm4hE9K894dJn//8MCoAAQBMDqfvupalYNz/myQ4pdVXje4jFuxN58BACARdw89wAAAF1BoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaCQz/3NzWfRNf/5+c0Df/i3iJK/fB1UCF4MCBTySRfohm+UWv9p500ECqMgUMhnDYEu73D0JgKFURAo5JMk0D/9ff/v337YGvTVwkp4ExaDQCGfbIHa/dGlFkSgsBgECvnkC3Rn0IU9ECgsBoFCPisIdNtjoQYRKCwGgUI+1wW6EdeGUwvad44/e7d9bd2+d/n85rlAtz/3an/V4acPfe+3he6Ob3d61ObwYtTmP52Y9Gw2dxJ4wSBQyOeaQO2Fn1Nf7r328J6krbbunnqn57lAt/U+2191TaB3hypnba4J9GI2dxJ4wSBQyOeKQE80thfh6XdMUhtl/cvZDz1wLtBtk903rgv0Xw5FzttcEejlbO4k8IJBoJDPFYHe7e/e7WR1eOht9zzvT7+z09Xuh87eKX9NoH/828enBHr85mWbi/eBXp/tyUngBYNAIZ9LgW7v9z0YbSu+rZr2Znr3cF9y/0PHJzgfVXgs0He+QPffu9LmXKCXs/mTwAsGgUI+lwK9f3gkvFfau0ffOQh0py/756WCRwR6eObySptzgV7O5k8CLxgECvlcCHT7Ks3xgfCFkjbaOqjw8B+u3ocdEeiVJy4Pbc4Eem02dxJ4wSBQyOdCOo/eevnuynuZnlLhA4PPgV5I76HNmUCvzeZOAi8YBAr5zBToyavfCwR6574Kf3L1eRsECotBoJDPLIGevnlogUAn3gd6vPqyDQKFxSBQyMcXqP3Xo9g+O30OdL5At6+d75669AV6pY0n0Pvjc6AIFK6AQCGfOS8i3T+8wXKRQA9PgZ5edXcp0Ctt5r2IhEDhCggU8pnzNqYTRzmvpz/w5KcxPbxifnxUf3L1lTbz3saEQOEKCBTymfFG+q3sXj38t1GBnnwe6PGu6O7e5plAr7WZ90Z6BApXQKCQzxN/ynl86ejVx5M/sbwbfxHJnth8+AOj3eX2iSBX7oGetzlK9fRPOR/NhkDhCRAo5HN/84jz19x3Inz8/+PoIDJXoI85/OjDRynd/PfPLwR6pc3+gm/8DxNBoHAFBAr5XBHo5UfGPfzQ//xhxjOPZwI9+ZC5o/+++eelQK+02d1n3bZyP84OgcIVECjkc02glx+ofLwnOOvNQ48EevaHmu/237sm0Ms2+5//zP9AZQQKV0CgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtBoAAAC0GgAAALQaAAAAtZUaD/MI7/KErp8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk9HuEpkJ4C6VkbBOpTejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk9HuEpkJ4C6VkbBOpTejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk9HuEpkJ4C6VkbBOpTejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk9HuEpkJ4C6VkbBOpTejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk93nB4/2WC6PmC68XC6imQnrVBoD6lx0OgCqyeAulZGwTqU3o8BKrA6imQnrVBoD6lx0OgCqyeAulZGwTqczbeygaaGg6BCjRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetbm2QTakykDPfd8EzQfH6A23AM9h3ugynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWsTKNBfv/vq8I/bHV/8dPzqWwSaMRwCFWi2esUgPWsTKNA3t3uBfnh9ItD9F1/+jEDjh0OgAs1WrxikZ23iBPrm9iDQ94d/fNzd//xqZ9Hz+6DHAda5oUtBoMp8wfViabZ6xSA9axMl0N0dza8OKn2w5Xu77/nhtT2eR6ChwyFQgWarVwzSszZBAn27sefhjufvP/7lr8f/sJfp7z/efo9Aw4dDoALNVq8YpGdtogS6ceZBoL9+9+W/v94/A3qU6dvzx/DHAda5oUtBoMp8wfViabZ6xSA9axMk0C0HgR5eQ9re5/z1u/1D97eHx/d/3qN0ej6mDPTc803QfHyA2oQI9L29a+nD682dz6NA3yPQAjQfH6A2IQJ9e/y/314R6IHjXeB17movhYfwynzB9WJptnrFID1rkyDQAx9ef/kzAk0dDoEKNFu9YpCetUkV6Bc/XT4HikADh0OgAs1WrxikZ21SBfrlz7wKnzocAhVotnrFID1rEy/QozN3X7+x93/yPtCU4RCoQLPVKwbpWZt4gR7/EGnnTv4SKXM4BCrQbPWKQXrWJkGgH17v7m2aOvlb+MzhEKhAs9UrBulZmwSBbv+u8+HT7N7f8mlMacMhUIFmq1cM0rM2GQK1jwB99AWfB5oyHAIVaLZ6xSA9axMo0DGOA6xzQ5eCQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtEKgPAlXmC64XS7PVKwbpWRsE6oNAlfmC68XSbPWKQXrWBoH6IFBlvuB6sTRbvWKQnrVBoD4IVJkvuF4szVavGKRnbRCoDwJV5guuF0uz1SsG6VkbBOqDQJX5guvF0mz1ikF61gaB+iBQZb7gerE0W71ikJ61QaA+CFSZL7heLM1WrxikZ20QqA8CVeYLrhdLs9UrBulZGwTqg0CV+YLrxdJs9YpBetYGgfogUGW+4HqxNFu9YpCetUGgPghUmS+4XizNVq8YpGdtnk2gPZky0HPPN0Hz8QFqwz3Qc7gHqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9EKgyX3C9WJqtXjFIz9ogUB8EqswXXC+WZqtXDNKzNgjUB4Eq8wXXi6XZ6hWD9KwNAvVBoMp8wfViabZ6xSA9a4NAfRCoMl9wvViarV4xSM/aIFAfBKrMF1wvlmarVwzSszYI1AeBKvMF14ul2eoVg/SsDQL1QaDKfMH1Ymm2esUgPWuDQH0QqDJfcL1Ymq1eMUjP2iBQHwSqzBdcL5Zmq1cM0rM2CNQHgSrzBdeLpdnqFYP0rA0C9UGgynzB9WJptnrFID1rg0B9VhboWH0EqtBs9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYGgfogUIHaZ9ts9YpBetYmUKC/fvfV8V+3t7ffXvsCgfog0PVotnrFID1rEyjQN7d7gX54fbvly58vvkCgEyDQ9Wi2esUgPWsTJ9A3t3uBbu5yfrUT57fnXyDQKRDoejRbvWKQnrWJEujujqYJ9L3d3fzw+oufzr5AoFMg0PVotnrFID1rEyTQtxt7vt8L9I3d2/z9x9vvz75AoFMg0PVotnrFID1rM1+gv3z9x78dv7i/+dPfHwn0L3/9uBfo7z9u/m1S/fbxFwh0EgS6Hs1WrxikZ20WCvTu5uSLPXuB/vrd/tH6283Xj77Y8ec9TqfCTBmoeP3s8QFeNE8I9Jevby6YFuj7U4G+R6AF6iNQgESeugd6fynQzy5+aJ5ADxzvAq9zV3spPIQXqH22zVavGKRnbeYJ9PIu6OOnQBEoAr1C7bNttnrFID1rM0+gJtHLR+2uQK8/B4pAPRDoejRbvWKQnrWJFyivwgsg0PVotnrFID1rM1+gkzy8D/R7E6m9D/TkCwQ6BQJdj2arVwzSszYJAuUvkZaDQNej2eoVg/SszZBA7+a8jYm/hRdAoOvRbPWKQXrWZkCgj1+Kf1qgm3+cfADToy8Q6AQIdD2arV4xSM/aDAj08ZtBHYHyeaCLQaDr0Wz1ikF61ma+QH/74ebmG0+wYxwHWOeGLgWBCtQ+22arVwzSszbzBbp5BP8qzp8I9CoIdD2arV4xSM/ajAj0D/+GQBHoALXPttnqFYP0rM18gX68i3wEj0CvgkDXo9nqFYP0rM2AQN9d+wN4BIpAn6T22TZbvWKQnrUZEOjH+ysvvSNQBPoktc+22eoVg/SszXyBnn0ik+rS4wDr3NClIFCB2mfbbPWKQXrWBoH6IFCB2mfbbPWKQXrWBoH6IFCB2mfbbPWKQXrWZr5AgzkOsM4NXQoCFah9ts1WrxikZ20QqA8CFah9ts1WrxikZ20QqA8CFah9ts1WrxikZ20QqA8CFah9ts1WrxikZ23mC5QXkf6BQMeofbbNVq8YpGdtEKgPAhWofbbNVq8YpGdtEKgPAhWofbbNVq8YpGdt5gv0kUv1D2Y6DrDODV0KAhWofbbNVq8YpGdtFgn0428/yAY9DrDODV0KAhWofbbNVq8YpGdtlgn047ubzxAoAp2g9tk2W71ikJ61WSjQf37Oc6AIdIraZ9ts9YpBetZmoUD1T7Y7DrDODV0KAhWofbbNVq8YpGdtlj741FoAACAASURBVAn03Y384crHAda5oUtBoAK1z7bZ6hWD9KzNfIGevY1J/X8wdxxgnRu6FAQqUPtsm61eMUjP2iwVqPzZ9McB1rmhS0GgArXPttnqFYP0rM1CgaqvwSPQ6yDQ9Wi2esUgPWszX6DBHAdY54YuBYEK1D7bZqtXDNKzNgjUB4EK1D7bZqtXDNKzNgjUB4EK1D7bZqtXDNKzNmMC/e2H3TOgEf//4Y8DrHNDl4JABWqfbbPVKwbpWZshgd7zIhICHaD22TZbvWKQnrUZEej9ycvw6ttAEehVEOh6NFu9YpCetRkQ6D8/P3hzY1I+jQmBTlL7bJutXjFIz9oMCPTuwZobl/JpTAh0itpn22z1ikF61ma+QH/74eRx+z1/C49AJ6l9ts1WrxikZ23mC/TRx9DzcXYIdJraZ9ts9YpBetYGgfogUIHaZ9ts9YpBetZmvkB5CP8PBDpG7bNttnrFID1rM1+gvIj0DwQ6Ru2zbbZ6xSA9azMgUN7GhEDHqH22zVavGKRnbQYEyhvpEegYtc+22eoVg/SszYhA+VNOBDpE7bNttnrFID1rMyRQPkwEgY5Q+2ybrV4xSM/ajAk0kOMA69zQpSBQgdpn22z1ikF61gaB+iBQgdpn22z1ikF61mZIoL98vXvt6J3+EhICvQ4CXY9mq1cM0rM2IwJ9t3/x6F3A/1NOBHoVBLoezVavGKRnbQYEun0f6O7lo3v+3xoj0DnUPttmq1cM0rM2AwK9O777c/tivPoo/jjAOjd0KQhUoPbZNlu9YpCetZkv0Ed/C3/H38Ij0Elqn22z1SsG6Vmb+QLl05j+gUDHqH22zVavGKRnbRCoDwIVqH22zVavGKRnbeYLdPMQ/pvjF+94CI9AJ6l9ts1WrxikZ23mC/Tj3cNL7xuZ8nF2CHSK2mfbbPWKQXrWZkCg27cx2X3Qdzc3J/dGESgCvU7ts222esUgPWszINDt+5jiPo7pOMA6N3QpCFSg9tk2W71ikJ61GRHoiUH5ODsEOk3ts222esUgPWszJNCDQvk4OwQ6h9pn22z1ikF61mZQoHEcB1jnhi4FgQrUPttmq1cM0rM2CNQHgQpEn23s9M1WrxikZ20QqA8CFUCgCrXHIz1rg0B9EKgAAlWoPR7pWRsE6oNABRCoQu3xSM/aIFAfBCqAQBVqj0d61gaB+iBQAQSqUHs80rM2CNQHgQogUIXa45GetUGgPghUAIEq1B6P9KwNAvVBoAIIVKH2eKRnbRCoDwIVQKAKtccjPWuDQH0QqAACVag9HulZGwTqg0AFEKhC7fFIz9p8agKNVgQCFUCgCrXHIz1rg0AnAsotr42PQJXpUYAC6VkbBDoRUG55bXwEqkyPAhRIz9og0ImAcstr4yNQZXoUoEB61gaBTgSUW14bH4Eq06MABdKzNgh0IqDc8tr4CFSZHgUokJ61QaATAeWW18ZHoMr0KECB9KwNAp0IKLe8Nj4CVaZHAQqkZ20Q6ERAueW18RGoMj0KUCA9a4NAJwLKLa+Nj0CV6VGAAulZGwQ6EVBueW18BKpMjwIUSM/aINCJgHLLa+MjUGV6FKBAetYGgU4ElFteGx+BKtOjAAXSszYIdCKg3PLa+AhUmR4FKJCetUGgEwHlltfGR6DK9ChAgfSsDQKdCCi3vDY+AlWmRwEKpGdtEOhEQLnltfERqDI9ClAgPWuDQCcCyi2vjY9AlelRgALpWRsEOhFQbnltfASqTI8CFEjP2iDQiYByy2vjI1BlehSgQHrWBoFOBJRbXhsfgSrTowAF0rM2zybQJKYUUbt89/GT6T09fPpwD/Tif2Fyy2vjcw9UmZ77UAqkZ20Q6ERAueW18RGoMj0KUCA9a4NAJwLKLa+Nj0CV6VGAAulZGwQ6EVBueW18BKpMjwIUSM/aINCJgHLLa+MjUGV6FKBAetYGgU4ElFteGx+BKtOjAAXSszYIdCKg3PLa+AhUmR4FKJCetUGgEwHlltfGR6DK9ChAgfSsDQKdCCi3vDY+AlWmRwEKpGdtEOhEQLnltfERqDI9ClAgPWuDQCcCyi2vjY9AlelRgALpWRsEOhFQbnltfASqTI8CFEjP2iDQiYByy2vjI1BlehSgQHrWBoFOBJRbXhsfgSrTowAF0rM2CHQioNzy2vgIVJkeBSiQnrVBoBMB5ZbXxkegyvQoQIH0rA0CnQgot7w2PgJVpkcBCqRnbRDoREC55bXxEagyPQpQID1rg0AnAsotr42PQJXpUYAC6VkbBDoRUG55bXwEqkyPAhRIz9og0ImAcstr4yNQZXoUoEB61gaBTgSUW14bH4Eq06MABdKzNgh0IqDc8tr4CFSZHgUokJ61QaATAeWW18ZHoMr0KECB9KwNAp0IKLe8Nj4CVaZHAQqkZ20Q6ERAueW18RGoMj0KUCA9a4NAJwLKLa+Nj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZGwQ6EdBYebX92PUIVJkeBSiQnrVBoBMBjZVX249dj0CV6VGAAulZm5cm0FGFIFABBKpQezzSszYI1P8lRKACCFSh9nikZ20QqP9LiEAFEKhC7fFIz9ogUP+XEIEKIFCF2uORnrVBoP4vIQIVQKAKtccjPWuDQP1fQgQqgEAVao9HetYGgfq/hAhUAIEq1B6P9KwNAvV/CRGoAAJVqD0e6VkbBOr/EiJQAQSqUHs80rM2CNT/JUSgAghUofZ4pGdtEKj/S4hABRCoQu3xSM/aIFD/lxCBCiBQhdrjkZ61QaD+LyECFUCgCrXHIz1rg0D9X0IEKoBAFWqPR3rWBoH6v4QIVACBKtQej/SsDQL1fwkRqAACVag9HulZGwTq/xIiUAEEqlB7PNKzNhkC/fW72x1f/HT86lsEOut3fOx6BKpMjwIUSM/aZAj0w+sTge6/+PJnBDrjd3zsegSqTI8CFEjP2mQI9P3tV8d/b+5/frWz6Pl90OMAsTdotspm/hIiUAEEqlB7PNKzNhkCfXNiy/d23/PDa3s8j0C18c+GQ6DC9ChAgfSsTYJAf//xL389l+nvP95+j0ARqEbs9ChAgfSsTYJAf/3uy39/vX8G9CjTt+eP4Y8DxN6g2Sqb+UuIQAUQqELt8UjP2iQI9PAa0vY+56/f7R+6vz08L/rnPRGdrjBbZU/wvOUn6yenI5bPpvf08OkTItD39q6lD683dz6PAn2PQOf8jqvXP2/5bHpPD58+IQI93NncPmq/FOiB413g2LvUs1X2BBd30XPLj45/NhwP4YXpeRCqQHrWJkGgBz68/vJnBDr2Oz52PQJVpkcBCqRnbVIF+sVPl8+BIlBl/LPhEKgwPQpQID1rkyrQL3/mVfix3/Gx6xGoMj0KUCA9axMv0KMzd4/a39j7P3kf6Lzf8bHrEagyPQpQID1rEy/Q4x8i7dzJXyIN/Y6PXY9AlelRgALpWZsEgX54vbu3aerkb+GHfsfHrkegyvQoQIH0rE2CQD++Pf00u/e3fBrT/N/xsesRqDL92goYDb+2oRCotckQqH0E6FenX/B5oNfLj45/NhwCFaZHoAoI1NqkCHQOxwFib9DUlopbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bDgEKkyPQBUQqLVBoENbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bDgEKkyPQBUQqLVBoENbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bDgEKkyPQBUQqLVBoENbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bDgEKkyPQBUQqLVBoENbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bDgEKkyPQBUQqLVBoENbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bDgEKkyPQBUQqLVBoENbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bDgEKkyPQBUQqLVBoENbHF1+dPyz4RCoMD0CVUCg1gaBDm1xdPnR8c+GQ6DC9AhUAYFaGwQ6tMXR5UfHPxsOgQrTI1AFBGptEOjQFkeXHx3/bLhiAk0uj0ALgUCtDQId2uLo8qPjnw2HQIXyCFQBgVobBDq0xdHlR8c/Gw6BCuURqAICtTYIdGiLo8uPjn82HAIVyiNQBQRqbRDo0BZHlx8d/2w4BCqUR6AKCNTaINChLY4uPzr+2XAIVCiPQBUQqLVBoENbHF1+dPyz4RCoUB6BKiBQa4NAh7Y4uvzo+GfDIVChPAJVQKDWBoEObXF0+eDx1fIjSa9fHoEWAoFaGwQ6tMXR5YPHV8uPJL1+eQRaCARqbRDo0BZHlw8eXy0/kvT65RFoIRCotUGgQ1scXT54fLX8SNLrl0eghUCg1gaBrkry+Gr55PDF8gi0EAjU2iDQVUkeXy2fHL5YHoEWAoFaGwS6Ksnjq+WTwxfLI9BCIFBrg0BXJXl8tXxy+GJ5BFoIBGptEOiqJI+vlk8OXyyPQAuBQK0NAl2V5PHV8snhi+URaCEQqLVBoKuSPL5aPjl8sTwCLQQCtTYIdFWSx1fLJ4cvlkeghUCg1gaBrkry+Gr55PDF8gi0EAjU2iDQVUkeXy2fHL5YHoEWAoFaGwS6Ksnjq+WTwxfLI9BCIFBrg0BXJXl8tXxy+GJ5BFoIBGptEOiqJI+vlk8OXyyPQAuBQK0NAl2V5PHV8snhi+URaCEQqLVBoKuSPL5aPjl8sTwCLQQCtTYIdFWSx1fLJ4cvlkeghUCg1gaBrkry+Gr55PDF8gi0EAjU2iDQVUkeXy2fHL5YHoEWAoFaGwS6Ksnjq+WTwxfLI9BCIFBrg0BXJXl8tXxy+GJ5BFoIBGptEOiqJI+vlk8OXyyPQAuBQK0NAl2V5PHV8snhi+URaCEQqLVBoKuSPL5aPjl8sTwCLQQCtTYIdFWSx1fLJ4cvlkeghUCg1gaBrkry+Gr55PDF8gi0EAjU2iDQVUkeXy2fHL5YHoEWAoFaGwS6Ksnjq+WTwxfLI9BCIFBrg0BXJXl8tXxy+GJ5BFoIBGptEOiqJI+vlk8OXyyPQAuBQK0NAl2V5PHV8snhi+URaCEQqLVBoKuSPL5aPjl8sTwCLQQCtTYIdFWSx1fLJ4cvlkeghUCg1gaBrkry+Gr55PDF8gi0EAjU2iDQVUkeXy2fHL5YHoEWAoFaGwS6Ksnjq+WTwxfLI9BCIFBrg0BXJXl8tXxy+GJ5BFoIBGptEOiqJI+vlk8OXyyPQAuBQK0NAl2V5PHV8snhi+URaCEQqLVBoKuSPL5aPjl8sTwCLQQCtTYIdFWSx1fLJ4cvlkeghUCg1gaBrkry+Gr55PDF8gi0EAjU2iDQVUkeXy2fHL5YHoEWAoFaGwS6Ksnjq+WTwxfLI9BCIFBrg0BXJXl8tXxy+GJ5BFoIBGptEOiqJI+vlk8OXyyPQAuBQK0NAl2V5PHV8snhi+URaCEQqLVBoKuSPL5aPjl8sTwCLQQCtTYIdFWSx1fLJ4cvlkeghUCg1ubZBJrE1JY+M8njq+WTwxfLT9VXyyeTnQ48P9wDTSZ5fLV8cvhiee6BFoJ7oNYGga5K8vhq+eTwxfIItBAI1Nog0FVJHl8tnxy+WB6BFgKBWhsEuirJ46vlk8MXyyPQQiBQa4NAVyV5fLV8cvhieQRaCARqbRDoqiSPr5ZPDl8sj0ALgUCtDQJdleTx1fLJ4YvlEWghEKi1QaCrkjy+Wj45fLE8Ai0EArU2CHRVksdXyyeHL5ZHoIVAoNYGga5K8vhq+eTwxfIItBAI1Nog0FVJHl8tnxy+WB6BFgKBWhsEuirJ46vlk8MXyyPQQiBQa4NAVyV5fLV8cvhieQRaCARqbRDoqiSPr5ZPDl8sj0ALgUCtDQJdleTx1fLJ4YvlEWghEKi1QaCrkjy+Wj45fLE8Ai0EArU2CHRVksdXyyeHL5ZHoIVAoNYGga5K8vhq+eTwxfIItBAI1Nog0FVJHl8tnxy+WB6BFgKBWhsEuirJ46vlk8MXyyPQQiBQa4NAVyV5fLV8cvhieQRaCARqbRDoqiSPr5ZPDl8sj0ALgUCtDQJdleTx1fLJ4YvlEWghEKi1QaCrkjy+Wj45fLE8Ai0EArU2CHRVksdXyyeHL5ZHoIVAoNYGga5K8vhq+eTwxfIItBAI1Nog0FVJHl8tnxy+WB6BFgKBWhsEuirJ46vlk8MXyyPQQiBQa4NAVyV5fLV8cvhieQRaCARqbRDoqiSPr5ZPDl8sj0ALgUCtDQJdleTx1fLJ4YvlEWghEKi1QaCrkjy+Wj45fLE8Ai0EArU2CHRVksdXyyeHL5ZHoIVAoNYGga5K8vhq+eTwxfIItBAI1Nog0FVJHl8tnxy+WB6BFgKBWhsEuirJ46vlk8MXyyPQQiBQa4NAVyV5fLV8cvhieQRaCARqbRDoqiSPr5ZPDl8sj0ALgUCtDQJdleTx1fLJ4YvlEWghEKi1QaCrkjy+Wj45fLE8Ai0EArU2CHRVksdXyyeHL5ZHoIVAoNYGga5K8vhq+eTwxfIItBAI1Nog0FVJHl8tnxy+WB6BFgKBWhsEuirJ46vlk8MXyyPQQiBQa4NAVyV5/Ox0xPKzT3FZ/cFqCFQBgVobBLoqyeNnpyOWn32Ky+oPVkOgCgjU2iDQVUkePzsdsfzsU1xWf7AaAlVAoNYGga5K8vjZ6YjlZ5/isvqD1RCoAgK1Ngh0VZLHz05HLD/7FJfVH6yGQIfIPtxgEOgypo75mUkePzsdsfzsU1xWf7AaAh0i+3CDQaDLmDrmZyZ5/Ox0xPKzT3FZ/cFqCHSI7MMNBoEuY+qYn5nk8bPTEcvPPsVl9QerIdAhsg83GAS6jKljfmaSx89ORyw/+xSX1R+shkCHyD7cYBDoMqaO+ZlJHj87HbH87FNcVn+wGgIdIvtwg0Ggy5g65mcmefzsdMTys09xWf3Bagh0iOzDDQaBLmPqmJ+Z5PGz0xHLzz7FZfUHqyHQIbIPNxgEuoypY35mksfPTkcsP/sUl9UfrHaxesnjj5ZHoAoIdBlTx/zMJI+fnY5YfvYpLqs/WA2BDpF9uMEg0GVMHfMzkzx+djpi+dmnuKz+YDUEOkT24QaDQJcxdczPTPL42emI5Wef4rL6g9UQ6BDZhxsMAl3G1DE/M8njZ6cjlp99isvqD1ZDoENkH24wCHQZU8f8zCSPn52OWH72KS6rP1gNgQ6RfbjBINBlTB3zM5M8fnY6YvnZp7is/mA1BDpE9uEGg0CXMXXMz0zy+NnpiOVnn+Ky+oPVEOgQ2YcbDAJdxtQxPzPJ42enI5affYrL6g9WQ6BDZB9uMAh0GVPH/Mwkj5+djlh+9ikuqz9YDYEOkX24wSDQZUwd8zOTPH52OmL52ae4rP5gNQQ6RPbhBoNAlzF1zM9M8vjZ6YjlZ5/isvqD1RDoENmHGwwCXcbUMT8zyeNnpyOWn32Ky+oPVkOgQ2QfbjAIdBlTx/zMJI+fnY5YfvYpLqs/WA2BDpF9uMEg0GVMHfMzkzx+djpi+dmnuKz+YDUEOkT24QaDQJcxdczPTPL42emI5Wef4rL6g9UQ6BDZhxsMAr3O1DEWJ/nmZacnlp99ysvqD1ZDoENkH24wCPQ6U8dYnOSbl52eWH72KS+rP1gNgQ6RfbjBINDrTB1jcZJvXnZ6YvnZp7ys/mA1BDpE9uEGg0CvM3WMxUm+ednpieVnn/Ky+oPVEOgQ2YcbDAK9ztQxFif55mWnJ5affcrL6g9WQ6BDZB9uMAj0OlPHWJzkm5ednlh+9ikvqz9YDYEOkX24wSDQ60wdY3GSb152emL52ae8rP5gNQQ6RPbhBoNArzN1jMVJvnnZ6YnlZ5/ysvqD1RDoENmHGwwCvc7UMRYn+eZlpyeWn33Kq6QzLFDx5o1ejkAVEOh11CV/ZpJvXnZ6YvnZp7xKOgh0CPHWrw0CvY665M9M8s3LTk8sP/uUV0kHgQ4h3vq1QaDXUZf8mUm+ednpieVnn/Iq6SDQIcRbvzYI9Drqkj8zyTcvOz2x/OxTXiUdBDqEeOvXBoFeR13yZyb55mWnJ5affcqrpINAhxBv/dog0OuoS/7MJN+87PTE8rNPeZV0EOgQ4q1fGwR6HXXJn5nkm5ednlh+9imvkg4CHUK89WuDQK+jLvkzk3zzmqe3bjoIdAjx1q8NAr2OuuTPTPLNa57euukg0CHEW782CPQ66pI/M8k3r3l666aDQIcQb/3aINDrqEv+zCTfvObprZsOAh1CvPVrg0Cvoy45FCb58C92P3i3xOnPf35UAdp0ankEmiXQX7+7vb39FoHCJMmHf7H7wbslTn/+8whU4ZMR6IfXt1u+/BmBwgTJh3+x+8G7JU5//vMIVOFTEejm/udXO4ue3wc9DjA28Oxthn4kH/7F7gfvljj9+c8jUIVPRaDv7b7nh9df/IRAwedlH/7F7+bYbwYCfcTg/zoubpMt0Dd21/P3H2+/R6Dg87IP/+J3c+w3A4E+4hMR6O8//uWvu3+8PX8MfxxgbOD5+wjteNmHf/G7OfabgUAf8YkI9Nfv9g/d326fCt3y5z0LC87fR2jHyz78hb8Rc9NJLi/XT2ad6fME+j5IoAAARVlBoAeOd4GX30tfg9LjEZ4C6SmQnrVBoD6lxyM8BdJTID1rs5ZA3yLQeAhPgfQUSM/aJAs0/FX4tSk9HuEpkJ4C6VmbZIF+fGPv/wx7H+jalB6P8BRIT4H0rE22QKP/EmltSo9HeAqkp0B61iZboNF/C782pccjPAXSUyA9a5Mt0M1d0NBPY1qb0uMRngLpKZCetUkXaPDnga5N6fEIT4H0FEjP2uQL9AmOA6xzQ5dSejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk9HuEpkJ4C6VkbBOpTejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk9HuEpkJ4C6VkbBOpTejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aIFCf0uMRngLpKZCetUGgPqXHIzwF0lMgPWuDQH1Kj0d4CqSnQHrWBoH6lB6P8BRIT4H0rA0C9Sk9HuEpkJ4C6VkbBOpTejzCUyA9BdKzNgjUp/R4hKdAegqkZ20QqE/p8QhPgfQUSM/aPJtA9/z5z6u3/HQgPAXSUyC9ayDQVhCeAukpkN41EGgrCE+B9BRI7xoItBWEp0B6CqR3DQTaCsJTID0F0rsGAm0F4SmQngLpiBaNuwAAB5pJREFUXQOBtoLwFEhPgfSugUBbQXgKpKdAetdYX6AAAJ8ICBQAYCEIFABgIQgUAGAhCBQAYCEIFABgIQgUAGAhKwv01+9ub2+/XbfnJ8CH15vYvvjJviDDBXx4/eXPu3+Q3ihvNoHdfm//Jr1z1hXoTgS3t/tdhpnsVviwuWS4gN9/3AdGeoPslLnhq+0XpHfBqgLdHMZXu1Pgf8NGeG/qfHP7l7+S4TLe7n/rSW+Qzf/ybKN6y+49waoCfW9b/OH14dEozOHNfmHfbNeXDBewvee0i430BtkHtjEou3eVVQW6N8Hmf9W+X7Ntc37/cfu//h+3+/sVGS5hE9b/sudASW+Mx0GR3iVrCvRogrc8BljCVqBkuIDNXXd7EYn0Bvn1u5M7m6R3hTUFejyNt/aUNAyx+x9+Mhxn+8jTBEp6g2xje397u3sGlPSu8SwCfc8BLODt9hkoMhzm1+82v/5nAiW9eWxi+z/Hd4CQ3hUQaBfe718IJcNBds/cIdBFvN+/gWm3fKR3BQTahPdnD6PIcCa7O+4IdBnvD2+b3z5qJ70r8BxoD+yNeGQ4zIfXu+B4DnQR+/QsP9K7Aq/Cd+D3Hw9/yEmGg7y9PfLFT6Q3yPEtn9t/kN4VVn4f6O79Y7yPbJDjHyJ+JMNRHgmU9AY5OnN3D570LuEvkepz6k8yXMb+w0RIb5A3+0fruzudpHcJfwtfn7enn95AhovYC5T0BtlH9Z6/hX+CdT+N6f0tn+YyzOHzcPbBkeESDh9nR3qD7AOzB+2kdwGfB1qe97ePBEqGS+DzQJfy+498Fq0Dn0gPALAQBAoAsBAECgCwEAQKALAQBAoAsBAECgCwEAQKALAQBAoAsBAECgCwEAQKALAQBAoAsBAECgCwEAQKALAQBAop3N3cvDp+8cvXN5+NXLz5+VfTPzXB/c3NzR/+7aHiwxcfP/72w83Nn/6+8kDwCYJAIYW7U2E9h0A3A9zc/PFvDxVPjf7Pz+cK9N3uxxAoXAeBQgpbfx0V9QwC3SjytOVOoA/fuL+ZKdC7GwQKDggUUtjdATxI5xkE+u7m5pvHFf/D58f7o9tH8AgUAkCgkMJOoIcH8c8i0JOnPHcV/+PXR6X+8/M//lcECgEgUEjh7uaP/+94L6+EQD+7Ow5xv/0CgYIOAoUUNgL92/GV+L1AHzR0v3t5Z/NI+rPtY217dnL7ws7earsfvDt9Fd0edR+kt/nim92Pnz5KP/2J7XOcN+cvY707vKa0vfzupNbNqelf2cWvTsq8Ov/+8bJHkoYXCAKFFLYC3WjHDOMI9M4ctbPtUUmbH/zPX9vXe7PtVbZ/IWhz4X979CL76U+8+viEQH85PIbfPIL/291j1e7NeNJ4W/tUoI8Hene47HQEeHkgUEhhK9CtZg6PgJ8QqBnx7qDGe7vg+Jr53d6Y++8fvt5euJHjb//60O/eXLa9cmfJKw/hPx4ew9/v/r0reHbZrvE31uCV3YzDDdh94/D9zd3fw+VDz03ApwYChRR2At0Kb++lpwR6uOO3F9Hd0Wev9j+49eDDe5Ls6+2F3zxqt7nC7hpu/tPuTuE1gR4ew99tLr47mPrRZUf/br7eG/so0NPv3x/ued5xF/Rlg0AhBTPLxnx7Lz0h0KOH9rozQW5+cP8f7Mqjr+xp05MLD9wffblpuW1yTaC/fL1/gmBz8d1ehI8vOwr1YMYHgT76/j3PfsIOBAop7AVkj3GfFuhjXR28d/Kq/dZgZs2Hr08uPGv38XjtNYFufsrc+tnBjOeXPTS+Pxfoo++/m/s+UvjEQaCQwl5N9mDbexX+9KdPBPrqpM4vX9+csPnJU6PuODHq/p9XBfpub81vLkVs/zyf8PJtTMfvP7zyBC8YBAopHJS4exC/QKCHpzjv5wr08X3U6wLdPYbfPYI/CvTxZbMFam+64o1MLx4ECikclbh9EK/fA33al4dvzLkHuvlvr453Q6V7oPtLbm7OX82ClwUChRSOStxq5n+cC/RuQKC750AfP+F4IdCZz4Fu9Penv9sToU8+BzpfoPYlz4W+aBAopPCgJnuwuxeoeW//Kron0NM/DXp4kX5/R/FSoPfHe4Lvbp58FX47yx/+t70Uf3gV/vFlMwV60p/3Mb1sECikcCKW+4NAj/ck391MCnQvtrvD+0D3Qn13eJ/7mUBnvQ9091//5fQNnlfeBzrrHujxbUyX7weAFwUChRTuzp4rPP2DovubGQI9/cOf7RU7Y+0LXAr09E+KXj0UOnK483t/8/hPjM4uuxDo/fFvSx99/2D4y3f0w8sCgUIKpw9ttw/iD3/Dbn9P/n8nBXr40/Pj2y9vTv4U/YpAz/6o/SmBbkax7z/5t/CPBbr/qJOL7x9ehOedTC8cBAopPHpu8P6xCL+Z9Sr83aOP6nj06UfXBLr/icP3nxDo8SH32acxfXb8sbMXi+wt81deRLo/9Tu8VBAoAMBCECgAwEIQKADAQhAoAMBCECgAwEIQKADAQhAoAMBCECgAwEIQKADAQhAoAMBCECgAwEIQKADAQhAoAMBCECgAwEIQKADAQhAoAMBCECgAwEIQKADAQhAoAMBCECgAwEL+P848Ssn6F1c+AAAAAElFTkSuQmCC" alt="" width="672" />
credit$default <-factor(credit$default, levels=c("1","2"), labels=c("No","Yes"))
table(credit$default)
##
## No Yes
## 700 300
a <- sample(1000,900)
The default vector in the dataset indicates the response of whether the applicant met the agreed payment terms.
To prepare training data and testing data, we need to divide the data randomly
set.seed(12354)
train_sample <- sample(1000,800)
credit_train <- credit[train_sample,]
credit_test <- credit[-train_sample,]
prop.table(table(credit_train$default))
##
## No Yes
## 0.70125 0.29875
prop.table(table(credit_test$default))
##
## No Yes
## 0.695 0.305
Step-3 Training the data Model
we need to remove the 21st column from the data model
##install.packages("C50")
##library(C50)
require(C50)
## Loading required package: C50
## Warning: package 'C50' was built under R version 3.3.1
credit_model <- C5.0(credit_train[-21], credit_train$default)
credit_model
##
## Call:
## C5.0.default(x = credit_train[-21], y = credit_train$default)
##
## Classification Tree
## Number of samples: 800
## Number of predictors: 20
##
## Tree size: 43
##
## Non-standard options: attempt to group attributes
summary(credit_model)
##
## Call:
## C5.0.default(x = credit_train[-21], y = credit_train$default)
##
##
## C5.0 [Release 2.07 GPL Edition] Tue Aug 30 19:23:22 2016
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 800 cases (21 attributes) from undefined.data
##
## Decision tree:
##
## checking_balance in {> 200 DM,unknown}: No (369/48)
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...property = real estate:
## :...months_loan_duration <= 11: No (33/1)
## : months_loan_duration > 11:
## : :...checking_balance = 1 - 200 DM: No (38/7)
## : checking_balance = < 0 DM:
## : :...age > 51: No (5)
## : age <= 51:
## : :...savings_balance = > 1000 DM: Yes (0)
## : savings_balance in {101 - 500 DM,501 - 1000 DM,
## : : unknown}: No (6/1)
## : savings_balance = < 100 DM:
## : :...personal_status = divorced male: No (2)
## : personal_status in {female,married male}: Yes (18/2)
## : personal_status = single male:
## : :...months_loan_duration > 18: Yes (3)
## : months_loan_duration <= 18:
## : :...installment_rate <= 3: No (4)
## : installment_rate > 3: Yes (4/1)
## property in {building society savings,other,unknown/none}:
## :...credit_history in {critical,delayed}:
## :...savings_balance in {> 1000 DM,101 - 500 DM,501 - 1000 DM,
## : : unknown}: No (30/4)
## : savings_balance = < 100 DM:
## : :...credit_history = delayed:
## : :...installment_rate <= 2: No (8/2)
## : : installment_rate > 2: Yes (11/1)
## : credit_history = critical:
## : :...months_loan_duration <= 27:
## : :...other_debtors in {co-applicant,
## : : : guarantor}: Yes (5/1)
## : : other_debtors = none: No (34/5)
## : months_loan_duration > 27:
## : :...age <= 32: Yes (10/1)
## : age > 32: No (3)
## credit_history in {fully repaid,fully repaid this bank,repaid}:
## :...residence_history <= 1: No (37/13)
## residence_history > 1:
## :...savings_balance = 501 - 1000 DM: Yes (3/1)
## savings_balance = > 1000 DM:
## :...age <= 27: Yes (2)
## : age > 27: No (5)
## savings_balance = unknown:
## :...existing_credits > 1: No (3)
## : existing_credits <= 1:
## : :...checking_balance = < 0 DM: Yes (12/3)
## : checking_balance = 1 - 200 DM: No (15/4)
## savings_balance = 101 - 500 DM:
## :...personal_status in {divorced male,female,
## : : married male}: Yes (14)
## : personal_status = single male:
## : :...property = other: No (5)
## : property in {building society savings,unknown/none}:
## : :...employment_length = > 7 yrs: No (2)
## : employment_length in {0 - 1 yrs,1 - 4 yrs,
## : 4 - 7 yrs,
## : unemployed}: Yes (5)
## savings_balance = < 100 DM:
## :...credit_history in {fully repaid,
## : fully repaid this bank}: Yes (26/3)
## credit_history = repaid:
## :...other_debtors in {co-applicant,
## : guarantor}: No (11/4)
## other_debtors = none:
## :...purpose in {domestic appliances,education,
## : furniture,others,
## : retraining}: Yes (21/4)
## purpose = repairs: No (2)
## purpose = business:
## :...job in {mangement self-employed,
## : : skilled employee,
## : : unemployed non-resident}: Yes (3)
## : job = unskilled resident: No (2)
## purpose = car (used):
## :...amount <= 8072: No (6/1)
## : amount > 8072: Yes (5)
## purpose = car (new):
## :...installment_rate > 3: Yes (9)
## : installment_rate <= 3:
## : :...housing in {for free,rent}: No (7/1)
## : housing = own: Yes (7/1)
## purpose = radio/tv:
## :...existing_credits > 1: Yes (2)
## existing_credits <= 1:
## :...dependents <= 1: No (11/4)
## dependents > 1: Yes (2)
##
##
## Evaluation on training data (800 cases):
##
## Decision Tree
## ----------------
## Size Errors
##
## 42 113(14.1%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 543 18 (a): class No
## 95 144 (b): class Yes
##
##
## Attribute usage:
##
## 100.00% checking_balance
## 53.88% property
## 39.75% credit_history
## 39.75% savings_balance
## 27.13% residence_history
## 20.63% months_loan_duration
## 15.88% other_debtors
## 9.63% purpose
## 7.75% age
## 7.13% personal_status
## 6.25% installment_rate
## 5.63% existing_credits
## 1.75% housing
## 1.63% dependents
## 1.38% amount
## 0.88% employment_length
## 0.63% job
##
##
## Time: 0.0 secs
Explaining the Summary of credit model:
Here 800 cases were studied and the following decision were made:
- The first line in the summary indicates that if the checking balance of an individual is unknown or greater than 200 DM the classify as not likely to default.
- If the checking balance is less than 0 DM or between 1 and 200 DM, then consider the given factors.
Step-4 Evaluating Model performance:
credit_pred <- predict(credit_model, credit_test)
##library(gmodels)
require(gmodels)
## Loading required package: gmodels
## Warning: package 'gmodels' was built under R version 3.3.1
CrossTable(credit_test$default, credit_pred, prop.chisq= FALSE, prop.c=FALSE, prop.r=FALSE, dnn=c('actual default','predicted default' ))
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 200
##
##
## | predicted default
## actual default | No | Yes | Row Total |
## ---------------|-----------|-----------|-----------|
## No | 123 | 16 | 139 |
## | 0.615 | 0.080 | |
## ---------------|-----------|-----------|-----------|
## Yes | 42 | 19 | 61 |
## | 0.210 | 0.095 | |
## ---------------|-----------|-----------|-----------|
## Column Total | 165 | 35 | 200 |
## ---------------|-----------|-----------|-----------|
##
##
Step-5 Improvin Model performance
credit_boost10 <- C5.0(credit_train[-21], credit_train$default, trials=10)
credit_boost10
##
## Call:
## C5.0.default(x = credit_train[-21], y = credit_train$default, trials = 10)
##
## Classification Tree
## Number of samples: 800
## Number of predictors: 20
##
## Number of boosting iterations: 10
## Average tree size: 35.3
##
## Non-standard options: attempt to group attributes
summary(credit_boost10)
##
## Call:
## C5.0.default(x = credit_train[-21], y = credit_train$default, trials = 10)
##
##
## C5.0 [Release 2.07 GPL Edition] Tue Aug 30 19:23:22 2016
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 800 cases (21 attributes) from undefined.data
##
## ----- Trial 0: -----
##
## Decision tree:
##
## checking_balance in {> 200 DM,unknown}: No (369/48)
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...property = real estate:
## :...months_loan_duration <= 11: No (33/1)
## : months_loan_duration > 11:
## : :...checking_balance = 1 - 200 DM: No (38/7)
## : checking_balance = < 0 DM:
## : :...age > 51: No (5)
## : age <= 51:
## : :...savings_balance = > 1000 DM: Yes (0)
## : savings_balance in {101 - 500 DM,501 - 1000 DM,
## : : unknown}: No (6/1)
## : savings_balance = < 100 DM:
## : :...personal_status = divorced male: No (2)
## : personal_status in {female,married male}: Yes (18/2)
## : personal_status = single male:
## : :...months_loan_duration > 18: Yes (3)
## : months_loan_duration <= 18:
## : :...installment_rate <= 3: No (4)
## : installment_rate > 3: Yes (4/1)
## property in {building society savings,other,unknown/none}:
## :...credit_history in {critical,delayed}:
## :...savings_balance in {> 1000 DM,101 - 500 DM,501 - 1000 DM,
## : : unknown}: No (30/4)
## : savings_balance = < 100 DM:
## : :...credit_history = delayed:
## : :...installment_rate <= 2: No (8/2)
## : : installment_rate > 2: Yes (11/1)
## : credit_history = critical:
## : :...months_loan_duration <= 27:
## : :...other_debtors in {co-applicant,
## : : : guarantor}: Yes (5/1)
## : : other_debtors = none: No (34/5)
## : months_loan_duration > 27:
## : :...age <= 32: Yes (10/1)
## : age > 32: No (3)
## credit_history in {fully repaid,fully repaid this bank,repaid}:
## :...residence_history <= 1: No (37/13)
## residence_history > 1:
## :...savings_balance = 501 - 1000 DM: Yes (3/1)
## savings_balance = > 1000 DM:
## :...age <= 27: Yes (2)
## : age > 27: No (5)
## savings_balance = unknown:
## :...existing_credits > 1: No (3)
## : existing_credits <= 1:
## : :...checking_balance = < 0 DM: Yes (12/3)
## : checking_balance = 1 - 200 DM: No (15/4)
## savings_balance = 101 - 500 DM:
## :...personal_status in {divorced male,female,
## : : married male}: Yes (14)
## : personal_status = single male:
## : :...property = other: No (5)
## : property in {building society savings,unknown/none}:
## : :...employment_length = > 7 yrs: No (2)
## : employment_length in {0 - 1 yrs,1 - 4 yrs,
## : 4 - 7 yrs,
## : unemployed}: Yes (5)
## savings_balance = < 100 DM:
## :...credit_history in {fully repaid,
## : fully repaid this bank}: Yes (26/3)
## credit_history = repaid:
## :...other_debtors in {co-applicant,
## : guarantor}: No (11/4)
## other_debtors = none:
## :...purpose in {domestic appliances,education,
## : furniture,others,
## : retraining}: Yes (21/4)
## purpose = repairs: No (2)
## purpose = business:
## :...job in {mangement self-employed,
## : : skilled employee,
## : : unemployed non-resident}: Yes (3)
## : job = unskilled resident: No (2)
## purpose = car (used):
## :...amount <= 8072: No (6/1)
## : amount > 8072: Yes (5)
## purpose = car (new):
## :...installment_rate > 3: Yes (9)
## : installment_rate <= 3:
## : :...housing in {for free,rent}: No (7/1)
## : housing = own: Yes (7/1)
## purpose = radio/tv:
## :...existing_credits > 1: Yes (2)
## existing_credits <= 1:
## :...dependents <= 1: No (11/4)
## dependents > 1: Yes (2)
##
## ----- Trial 1: -----
##
## Decision tree:
##
## foreign_worker = no: No (28.3/3.2)
## foreign_worker = yes:
## :...checking_balance = unknown:
## :...installment_plan in {bank,stores}:
## : :...other_debtors in {co-applicant,guarantor}: No (3.2)
## : : other_debtors = none:
## : : :...purpose in {business,car (new),car (used),domestic appliances,
## : : : education,others,repairs,
## : : : retraining}: Yes (39.8/10.3)
## : : purpose in {furniture,radio/tv}: No (18.1/2.3)
## : installment_plan = none:
## : :...amount <= 1381: No (48.1/4.5)
## : amount > 1381:
## : :...purpose in {car (used),domestic appliances,others,
## : : retraining}: No (28.5)
## : purpose in {business,car (new),education,furniture,radio/tv,
## : : repairs}:
## : :...credit_history = delayed: Yes (24.7/11.1)
## : credit_history in {fully repaid,
## : : fully repaid this bank}: No (0.8)
## : credit_history = critical:
## : :...amount <= 6887: No (48.2/2.3)
## : : amount > 6887: Yes (5.3/0.8)
## : credit_history = repaid:
## : :...dependents > 1: No (10.2/2.3)
## : dependents <= 1:
## : :...existing_credits > 1: Yes (17.6/4)
## : existing_credits <= 1:
## : :...age <= 23: Yes (9.2/2.4)
## : age > 23: No (48.6/9.1)
## checking_balance in {< 0 DM,> 200 DM,1 - 200 DM}:
## :...other_debtors = co-applicant: Yes (24/7.8)
## other_debtors = guarantor:
## :...purpose in {business,car (new)}: Yes (6.9/0.8)
## : purpose in {car (used),domestic appliances,education,furniture,
## : others,radio/tv,repairs,retraining}: No (24.3/2.4)
## other_debtors = none:
## :...employment_length = 0 - 1 yrs: Yes (84.5/25.3)
## employment_length in {> 7 yrs,1 - 4 yrs,4 - 7 yrs,unemployed}:
## :...credit_history = delayed: No (33.6/12.5)
## credit_history in {fully repaid,
## : fully repaid this bank}: Yes (39/13.2)
## credit_history = critical:
## :...age > 39: No (23.6/2.3)
## : age <= 39:
## : :...installment_plan in {bank,stores}: Yes (7.7/1.6)
## : installment_plan = none: No (45.2/20.6)
## credit_history = repaid:
## :...savings_balance in {> 1000 DM,
## : 501 - 1000 DM}: No (10.2)
## savings_balance in {< 100 DM,101 - 500 DM,unknown}:
## :...job = mangement self-employed: No (25.1/10.2)
## job = unemployed non-resident: Yes (6.9/1.6)
## job = unskilled resident:
## :...dependents <= 1: No (28.1/6.3)
## : dependents > 1: Yes (7.7/0.8)
## job = skilled employee:
## :...checking_balance = > 200 DM: No (11.8/2.3)
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...personal_status in {divorced male,
## : married male}: Yes (15.4/2.4)
## personal_status = single male:
## :...amount <= 6110: No (32.8/10.2)
## : amount > 6110: Yes (6.2)
## personal_status = female:
## :...existing_credits > 1: Yes (3.2)
## existing_credits <= 1: [S1]
##
## SubTree [S1]
##
## property in {building society savings,real estate,unknown/none}: Yes (22.3/2.4)
## property = other: No (11.1/3.2)
##
## ----- Trial 2: -----
##
## Decision tree:
##
## checking_balance = unknown:
## :...other_debtors = co-applicant: Yes (12.2/4.5)
## : other_debtors = guarantor: No (6.8/2.9)
## : other_debtors = none:
## : :...installment_plan = stores: No (15/5.6)
## : installment_plan = bank:
## : :...installment_rate <= 1: No (3.5)
## : : installment_rate > 1:
## : : :...months_loan_duration <= 16: No (12.7/1.9)
## : : months_loan_duration > 16: Yes (27.9/8.3)
## : installment_plan = none:
## : :...amount <= 1381: No (37)
## : amount > 1381:
## : :...age > 32: No (95.5/12.2)
## : age <= 32:
## : :...personal_status = divorced male: Yes (2.5/0.6)
## : personal_status in {married male,
## : : single male}: No (39.9/9.3)
## : personal_status = female:
## : :...purpose in {business,car (used),radio/tv}: No (9.3)
## : purpose in {car (new),domestic appliances,education,
## : furniture,others,repairs,
## : retraining}: Yes (29/8.1)
## checking_balance in {< 0 DM,> 200 DM,1 - 200 DM}:
## :...property = unknown/none:
## :...housing = own: Yes (24.2/2.7)
## : housing in {for free,rent}:
## : :...employment_length in {> 7 yrs,0 - 1 yrs,1 - 4 yrs,
## : : 4 - 7 yrs}: Yes (57.1/17.2)
## : employment_length = unemployed: No (19/5)
## property in {building society savings,other,real estate}:
## :...age > 47:
## :...personal_status in {divorced male,female,single male}: No (37.4/4.8)
## : personal_status = married male: Yes (3.5)
## age <= 47:
## :...purpose in {business,car (used),repairs,retraining}: No (61.5/18.4)
## purpose in {domestic appliances,education,others}: Yes (25/8.1)
## purpose = car (new):
## :...installment_rate > 2: Yes (65.1/20.4)
## : installment_rate <= 2:
## : :...telephone = none: No (20.1/2.7)
## : telephone = yes: Yes (9.7/1.9)
## purpose = radio/tv:
## :...months_loan_duration <= 8: No (6.5)
## : months_loan_duration > 8:
## : :...employment_length in {> 7 yrs,4 - 7 yrs}: No (23.9/7.5)
## : employment_length in {0 - 1 yrs,unemployed}: Yes (26.2/9.8)
## : employment_length = 1 - 4 yrs:
## : :...months_loan_duration <= 15: No (12.6/3.2)
## : months_loan_duration > 15: Yes (26.2/5.2)
## purpose = furniture:
## :...installment_plan = stores: No (8.6)
## installment_plan in {bank,none}:
## :...other_debtors = guarantor: No (5.1)
## other_debtors in {co-applicant,none}:
## :...employment_length in {> 7 yrs,
## : unemployed}: Yes (15.9/1.9)
## employment_length in {0 - 1 yrs,
## : 4 - 7 yrs}: No (26.8/7.8)
## employment_length = 1 - 4 yrs:
## :...personal_status = divorced male: No (4.6)
## personal_status in {female,married male,
## : single male}:
## :...telephone = none: Yes (23.2/6.1)
## telephone = yes: No (6.3/1.4)
##
## ----- Trial 3: -----
##
## Decision tree:
##
## checking_balance in {> 200 DM,unknown}:
## :...employment_length in {> 7 yrs,4 - 7 yrs}: No (149.6/27.5)
## : employment_length in {0 - 1 yrs,1 - 4 yrs,unemployed}:
## : :...amount > 4139: Yes (53.8/19.7)
## : amount <= 4139:
## : :...other_debtors in {co-applicant,guarantor}: Yes (14.4/4.6)
## : other_debtors = none: No (114.4/28.3)
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...savings_balance in {> 1000 DM,501 - 1000 DM,unknown}:
## :...foreign_worker = no: No (2.6)
## : foreign_worker = yes:
## : :...property = building society savings: Yes (19.7/7.4)
## : property in {other,real estate,unknown/none}: No (67.3/15.4)
## savings_balance in {< 100 DM,101 - 500 DM}:
## :...months_loan_duration > 27:
## :...employment_length in {> 7 yrs,0 - 1 yrs,1 - 4 yrs,
## : : 4 - 7 yrs}: Yes (83.9/18.1)
## : employment_length = unemployed: No (9/2.3)
## months_loan_duration <= 27:
## :...credit_history in {fully repaid,
## : fully repaid this bank}: Yes (34.3/8.6)
## credit_history in {critical,delayed,repaid}:
## :...other_debtors = guarantor: No (19.8/3.2)
## other_debtors in {co-applicant,none}:
## :...personal_status in {divorced male,
## : married male}: Yes (41.9/17.1)
## personal_status = single male:
## :...savings_balance = 101 - 500 DM: No (13.6/1.5)
## : savings_balance = < 100 DM:
## : :...existing_credits > 1: No (41.6/11)
## : existing_credits <= 1:
## : :...employment_length in {> 7 yrs,
## : : unemployed}: Yes (17.6/3.2)
## : employment_length in {0 - 1 yrs,1 - 4 yrs,
## : 4 - 7 yrs}: No (41/12.9)
## personal_status = female:
## :...existing_credits > 2: Yes (5.9/0.5)
## existing_credits <= 2:
## :...amount > 8978: Yes (5.3)
## amount <= 8978:
## :...installment_plan in {bank,
## : stores}: No (5.4/1.6)
## installment_plan = none:
## :...other_debtors = co-applicant: No (2.6/0.5)
## other_debtors = none:
## :...installment_rate <= 1: No (6.9/1.2)
## installment_rate > 1: [S1]
##
## SubTree [S1]
##
## credit_history = critical: No (11.8/3.5)
## credit_history = delayed: Yes (2.2/0.5)
## credit_history = repaid:
## :...job = mangement self-employed: No (4.8)
## job in {skilled employee,unemployed non-resident,
## unskilled resident}: Yes (30.7/9.2)
##
## ----- Trial 4: -----
##
## Decision tree:
##
## months_loan_duration <= 7:
## :...amount <= 4139: No (36.7/2.3)
## : amount > 4139: Yes (4.7/0.4)
## months_loan_duration > 7:
## :...purpose in {domestic appliances,repairs}: Yes (27.7/9.1)
## purpose in {others,retraining}: No (16/4.7)
## purpose = car (used):
## :...amount <= 11054: No (65.8/11)
## : amount > 11054: Yes (5.7)
## purpose = education:
## :...housing in {for free,rent}: No (18.7/5)
## : housing = own:
## : :...age <= 44: Yes (24.5/6)
## : age > 44: No (2.3)
## purpose = business:
## :...housing = for free: No (1.5/0.4)
## : housing = rent: Yes (9.9/2)
## : housing = own:
## : :...savings_balance in {> 1000 DM,101 - 500 DM,501 - 1000 DM,
## : : unknown}: No (32.6/6.3)
## : savings_balance = < 100 DM:
## : :...installment_plan = bank: No (6.3)
## : installment_plan in {none,stores}:
## : :...personal_status in {divorced male,married male,
## : : single male}: Yes (32.4/9.2)
## : personal_status = female: No (9.1/1.1)
## purpose = radio/tv:
## :...checking_balance in {> 200 DM,unknown}: No (79.8/24.4)
## : checking_balance = < 0 DM:
## : :...months_loan_duration > 30: Yes (6)
## : : months_loan_duration <= 30:
## : : :...job in {mangement self-employed,
## : : : unemployed non-resident}: No (6.4/1)
## : : job in {skilled employee,unskilled resident}:
## : : :...housing = own: No (18.9/6.8)
## : : housing in {for free,rent}: Yes (11.2/1.5)
## : checking_balance = 1 - 200 DM:
## : :...other_debtors in {co-applicant,guarantor}: No (12.6/2.5)
## : other_debtors = none:
## : :...personal_status = divorced male: No (0)
## : personal_status = married male: Yes (9.8/1.7)
## : personal_status in {female,single male}:
## : :...existing_credits <= 1: No (29.6/8.5)
## : existing_credits > 1: Yes (8.2/2.4)
## purpose = car (new):
## :...installment_plan = stores: Yes (2.1)
## : installment_plan = bank:
## : :...age <= 60: Yes (33.3/7.8)
## : : age > 60: No (3.3)
## : installment_plan = none:
## : :...savings_balance in {> 1000 DM,101 - 500 DM}: No (19.5/5.8)
## : savings_balance in {501 - 1000 DM,unknown}: Yes (37.5/16.5)
## : savings_balance = < 100 DM:
## : :...installment_rate <= 2: No (22.9/5.2)
## : installment_rate > 2:
## : :...amount > 2329: Yes (20.7/2)
## : amount <= 2329:
## : :...checking_balance in {> 200 DM,unknown}: No (10.6)
## : checking_balance in {< 0 DM,1 - 200 DM}:
## : :...housing = for free: Yes (4.3)
## : housing in {own,rent}: No (29.1/11.7)
## purpose = furniture:
## :...installment_plan = stores: No (7.7)
## installment_plan in {bank,none}:
## :...other_debtors = guarantor: No (5.6)
## other_debtors in {co-applicant,none}:
## :...months_loan_duration <= 16:
## :...checking_balance in {< 0 DM,> 200 DM,unknown}: No (35.9/3.2)
## : checking_balance = 1 - 200 DM: Yes (14.4/4.9)
## months_loan_duration > 16:
## :...dependents > 1: Yes (8)
## dependents <= 1:
## :...housing = for free: No (3.9)
## housing in {own,rent}:
## :...savings_balance in {> 1000 DM,501 - 1000 DM,
## : unknown}: No (11.6/1.5)
## savings_balance = 101 - 500 DM: Yes (4/1)
## savings_balance = < 100 DM:
## :...job in {mangement self-employed,
## : unemployed non-resident}: Yes (10.1)
## job in {skilled employee,unskilled resident}:
## :...telephone = none: Yes (29.4/9.7)
## telephone = yes: No (9.9/2.8)
##
## ----- Trial 5: -----
##
## Decision tree:
##
## checking_balance = < 0 DM:
## :...foreign_worker = no: No (13.5/3)
## : foreign_worker = yes:
## : :...job = mangement self-employed: No (31.9/11.2)
## : job = unemployed non-resident: Yes (7.1/1.6)
## : job = unskilled resident:
## : :...employment_length in {> 7 yrs,unemployed}: No (7.9)
## : : employment_length = 0 - 1 yrs: Yes (6.4)
## : : employment_length in {1 - 4 yrs,4 - 7 yrs}:
## : : :...purpose in {business,car (used),furniture,others,repairs,
## : : : retraining}: No (8.7)
## : : purpose in {car (new),domestic appliances,education,
## : : radio/tv}: Yes (20.4/7.3)
## : job = skilled employee:
## : :...credit_history = critical: No (27.1/10.7)
## : credit_history in {delayed,fully repaid,
## : : fully repaid this bank}: Yes (32.6/7.9)
## : credit_history = repaid:
## : :...savings_balance in {> 1000 DM,501 - 1000 DM}: No (3.9)
## : savings_balance in {< 100 DM,101 - 500 DM,unknown}:
## : :...existing_credits > 1: Yes (5.8)
## : existing_credits <= 1:
## : :...other_debtors in {co-applicant,none}: Yes (74.8/20.3)
## : other_debtors = guarantor: No (3.2)
## checking_balance in {> 200 DM,1 - 200 DM,unknown}:
## :...amount > 9857: Yes (30/8.2)
## amount <= 9857:
## :...job = unemployed non-resident: No (7.3)
## job = mangement self-employed:
## :...employment_length = 4 - 7 yrs: No (6.7)
## : employment_length in {> 7 yrs,0 - 1 yrs,1 - 4 yrs,unemployed}:
## : :...savings_balance in {> 1000 DM,101 - 500 DM}: Yes (12.5/3.2)
## : savings_balance in {501 - 1000 DM,unknown}: No (16.9/5.4)
## : savings_balance = < 100 DM:
## : :...residence_history <= 1: No (5.9)
## : residence_history > 1:
## : :...other_debtors in {co-applicant,guarantor}: No (2.4)
## : other_debtors = none:
## : :...dependents > 1: Yes (2.8)
## : dependents <= 1:
## : :...housing = for free: No (3.8)
## : housing in {own,rent}: Yes (32/9.1)
## job in {skilled employee,unskilled resident}:
## :...installment_plan = stores: No (16/5.1)
## installment_plan = bank:
## :...installment_rate <= 2: No (21.9/4.2)
## : installment_rate > 2:
## : :...personal_status in {divorced male,female,
## : : single male}: Yes (37/10.1)
## : personal_status = married male: No (3.6)
## installment_plan = none:
## :...savings_balance in {> 1000 DM,unknown}:
## :...other_debtors in {co-applicant,none}: No (87/14.1)
## : other_debtors = guarantor: Yes (2.8/0.4)
## savings_balance in {< 100 DM,101 - 500 DM,501 - 1000 DM}:
## :...other_debtors = co-applicant: Yes (12.2/4.7)
## other_debtors = guarantor: No (10.7/1.6)
## other_debtors = none:
## :...age > 50: No (13)
## age <= 50:
## :...checking_balance = unknown: No (94.8/27)
## checking_balance = > 200 DM:
## :...job = unskilled resident: Yes (7.5/0.4)
## : job = skilled employee:
## : :...existing_credits <= 2: No (24/5.3)
## : existing_credits > 2: Yes (2.4)
## checking_balance = 1 - 200 DM:
## :...employment_length in {> 7 yrs,4 - 7 yrs,
## : unemployed}: No (39.4/11.2)
## employment_length = 0 - 1 yrs:
## :...housing in {for free,own}: No (24.9/7.2)
## : housing = rent: Yes (9.7/2.3)
## employment_length = 1 - 4 yrs: [S1]
##
## SubTree [S1]
##
## personal_status = divorced male: No (2.7)
## personal_status in {female,married male,single male}: Yes (26.8/6.8)
##
## ----- Trial 6: -----
##
## Decision tree:
##
## checking_balance = unknown:
## :...employment_length = unemployed: Yes (14.9/6.4)
## : employment_length = 4 - 7 yrs:
## : :...age <= 22: Yes (9.4/2.6)
## : : age > 22: No (35.6/2.4)
## : employment_length = 0 - 1 yrs:
## : :...other_debtors = co-applicant: Yes (2.9)
## : : other_debtors = guarantor: No (1.6)
## : : other_debtors = none:
## : : :...amount <= 4594: No (19/4.6)
## : : amount > 4594: Yes (10.7/0.7)
## : employment_length = 1 - 4 yrs:
## : :...installment_rate <= 1: No (11.3)
## : : installment_rate > 1:
## : : :...installment_plan in {bank,stores}: Yes (14.7/4.5)
## : : installment_plan = none: No (66.9/24.7)
## : employment_length = > 7 yrs:
## : :...property in {building society savings,real estate}: No (21)
## : property in {other,unknown/none}:
## : :...months_loan_duration > 26: No (12.5)
## : months_loan_duration <= 26:
## : :...existing_credits <= 1: No (20/4.2)
## : existing_credits > 1: Yes (22/6.8)
## checking_balance in {< 0 DM,> 200 DM,1 - 200 DM}:
## :...property = unknown/none:
## :...job = unskilled resident: Yes (8.6)
## : job in {mangement self-employed,skilled employee,
## : : unemployed non-resident}:
## : :...age <= 22: No (4.8)
## : age > 22:
## : :...housing in {own,rent}: Yes (27.9/4.9)
## : housing = for free:
## : :...installment_plan = stores: Yes (0)
## : installment_plan = bank: No (12.1/3.9)
## : installment_plan = none:
## : :...job = mangement self-employed: No (17/6.5)
## : job in {skilled employee,
## : unemployed non-resident}: Yes (28/7.6)
## property in {building society savings,other,real estate}:
## :...age > 47:
## :...installment_plan in {bank,none}: No (35.4/4.5)
## : installment_plan = stores: Yes (4.2/0.3)
## age <= 47:
## :...savings_balance in {> 1000 DM,101 - 500 DM,
## : 501 - 1000 DM}: No (62.7/22.8)
## savings_balance = unknown:
## :...amount <= 1484: Yes (15.1/2.2)
## : amount > 1484: No (30.3/4.9)
## savings_balance = < 100 DM:
## :...amount > 8072: Yes (15.2/1.2)
## amount <= 8072:
## :...purpose in {car (used),domestic appliances,furniture,
## : others,repairs}: No (86.9/28.4)
## purpose in {education,retraining}: Yes (17.4/6)
## purpose = business:
## :...installment_plan in {bank,stores}: No (6.3)
## : installment_plan = none: Yes (22/9.1)
## purpose = radio/tv:
## :...months_loan_duration > 39: Yes (5.8)
## : months_loan_duration <= 39:
## : :...other_debtors in {co-applicant,
## : : guarantor}: No (9.8/1.2)
## : other_debtors = none:
## : :...dependents > 1: Yes (7.8/1.8)
## : dependents <= 1: [S1]
## purpose = car (new):
## :...checking_balance = > 200 DM: No (4.2)
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...other_debtors in {co-applicant,
## : guarantor}: Yes (11.4)
## other_debtors = none:
## :...foreign_worker = no: No (3.2)
## foreign_worker = yes:
## :...installment_plan in {bank,
## : stores}: Yes (4.3)
## installment_plan = none: [S2]
##
## SubTree [S1]
##
## employment_length in {> 7 yrs,4 - 7 yrs,unemployed}: No (8.1)
## employment_length in {0 - 1 yrs,1 - 4 yrs}:
## :...installment_plan in {bank,none}: Yes (38.8/14.6)
## installment_plan = stores: No (3.3)
##
## SubTree [S2]
##
## job in {mangement self-employed,unemployed non-resident}: Yes (3.6)
## job = unskilled resident: No (16.8/5.5)
## job = skilled employee:
## :...installment_rate <= 2: No (7/1.4)
## installment_rate > 2: Yes (19.4/3.9)
##
## ----- Trial 7: -----
##
## Decision tree:
##
## checking_balance in {> 200 DM,unknown}:
## :...foreign_worker = no: No (6.8)
## : foreign_worker = yes:
## : :...purpose in {car (used),domestic appliances,others,
## : : retraining}: No (37.1/2.8)
## : purpose in {business,car (new),education,furniture,radio/tv,repairs}:
## : :...employment_length in {> 7 yrs,4 - 7 yrs,unemployed}: No (133.4/37.2)
## : employment_length in {0 - 1 yrs,1 - 4 yrs}:
## : :...amount <= 1264: No (10.8)
## : amount > 1264: Yes (127.8/57.8)
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...property = real estate:
## :...foreign_worker = no: No (4.7)
## : foreign_worker = yes:
## : :...months_loan_duration <= 11: No (21.2/1.5)
## : months_loan_duration > 11:
## : :...savings_balance in {> 1000 DM,101 - 500 DM,
## : : 501 - 1000 DM}: No (8.5)
## : savings_balance in {< 100 DM,unknown}:
## : :...age <= 48: Yes (66.1/26.6)
## : age > 48: No (6)
## property in {building society savings,other,unknown/none}:
## :...residence_history <= 1:
## :...employment_length in {> 7 yrs,0 - 1 yrs,1 - 4 yrs,
## : : 4 - 7 yrs}: No (51.2/14.8)
## : employment_length = unemployed: Yes (7.2/0.7)
## residence_history > 1:
## :...credit_history in {critical,delayed}:
## :...installment_rate <= 1: No (8.6)
## : installment_rate > 1:
## : :...savings_balance in {> 1000 DM,101 - 500 DM,
## : : unknown}: No (20.7/3.8)
## : savings_balance = 501 - 1000 DM: Yes (3.9/1.9)
## : savings_balance = < 100 DM:
## : :...credit_history = delayed: Yes (10.8/1.5)
## : credit_history = critical:
## : :...installment_plan = bank: Yes (6.4/1.8)
## : installment_plan in {none,stores}: No (46.3/20.3)
## credit_history in {fully repaid,fully repaid this bank,repaid}:
## :...employment_length in {> 7 yrs,0 - 1 yrs}: Yes (86.7/17.9)
## employment_length in {1 - 4 yrs,4 - 7 yrs,unemployed}:
## :...months_loan_duration <= 9: Yes (7.3)
## months_loan_duration > 9:
## :...installment_rate <= 1: No (17.9/7)
## installment_rate > 1:
## :...job in {mangement self-employed,
## : unemployed non-resident}: No (17.2/4.2)
## job in {skilled employee,
## unskilled resident}: Yes (93.5/33.3)
##
## ----- Trial 8: -----
##
## Decision tree:
##
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...amount > 8613: Yes (31.6/6.7)
## : amount <= 8613:
## : :...savings_balance in {> 1000 DM,501 - 1000 DM}: No (27.7/8.1)
## : savings_balance = 101 - 500 DM:
## : :...personal_status in {divorced male,female,
## : : : married male}: Yes (23.9/3.8)
## : : personal_status = single male:
## : : :...property in {building society savings,
## : : : unknown/none}: Yes (18.4/6.8)
## : : property in {other,real estate}: No (10.5)
## : savings_balance = unknown:
## : :...existing_credits > 1: No (16.8)
## : : existing_credits <= 1:
## : : :...checking_balance = < 0 DM: Yes (17.1/5.7)
## : : checking_balance = 1 - 200 DM: No (23.7/8.5)
## : savings_balance = < 100 DM:
## : :...months_loan_duration > 42: Yes (17/2.6)
## : months_loan_duration <= 42:
## : :...purpose in {business,car (used),others,repairs,
## : : retraining}: No (54.4/18.4)
## : purpose in {domestic appliances,education}: Yes (15.5/4.8)
## : purpose = radio/tv:
## : :...credit_history in {critical,delayed,repaid}: No (66.5/18.1)
## : : credit_history in {fully repaid,
## : : fully repaid this bank}: Yes (6.7/0.8)
## : purpose = car (new):
## : :...other_debtors in {co-applicant,guarantor}: Yes (11.8/1)
## : : other_debtors = none:
## : : :...installment_rate <= 2: No (17.2/4)
## : : installment_rate > 2:
## : : :...property in {building society savings,
## : : : real estate}: No (25.6/9.2)
## : : property in {other,unknown/none}: Yes (19.8/1.6)
## : purpose = furniture:
## : :...other_debtors = guarantor: No (4.3)
## : other_debtors in {co-applicant,none}:
## : :...installment_plan = stores: No (3.7)
## : installment_plan in {bank,none}:
## : :...residence_history <= 1: No (11.7/3.2)
## : residence_history > 1: Yes (55.1/18.9)
## checking_balance in {> 200 DM,unknown}:
## :...foreign_worker = no: No (5.8)
## foreign_worker = yes:
## :...purpose in {domestic appliances,education,others,radio/tv,repairs,
## : retraining}: No (123.9/31.9)
## purpose = car (used):
## :...residence_history <= 1: Yes (3.2/0.6)
## : residence_history > 1: No (23.9/1.1)
## purpose = furniture:
## :...months_loan_duration > 30: Yes (6.3/1.1)
## : months_loan_duration <= 30:
## : :...dependents <= 1: No (33.2/5.1)
## : dependents > 1: Yes (3.7/1)
## purpose = business:
## :...residence_history > 3: No (8.4)
## : residence_history <= 3:
## : :...checking_balance = > 200 DM: No (3)
## : checking_balance = unknown:
## : :...amount <= 2150: No (4.7)
## : amount > 2150: Yes (24/8)
## purpose = car (new):
## :...residence_history <= 1: No (6.9)
## residence_history > 1:
## :...installment_plan in {bank,stores}: Yes (13.3/3.3)
## installment_plan = none:
## :...existing_credits > 2: Yes (3)
## existing_credits <= 2:
## :...telephone = yes: No (23.3/3.1)
## telephone = none: [S1]
##
## SubTree [S1]
##
## credit_history = critical: No (4.7)
## credit_history in {delayed,fully repaid,fully repaid this bank,
## repaid}: Yes (25.6/9.6)
##
## ----- Trial 9: -----
##
## Decision tree:
##
## checking_balance in {> 200 DM,unknown}: No (265.6/47.6)
## checking_balance in {< 0 DM,1 - 200 DM}:
## :...savings_balance in {> 1000 DM,501 - 1000 DM}: No (30.7/14)
## savings_balance = 101 - 500 DM:
## :...credit_history in {critical,delayed}: No (17.5/2.3)
## : credit_history in {fully repaid,fully repaid this bank,repaid}:
## : :...other_debtors in {co-applicant,guarantor}: Yes (4.3)
## : other_debtors = none:
## : :...personal_status in {divorced male,female,
## : : married male}: Yes (18.8/1.9)
## : personal_status = single male: No (18.1/5.4)
## savings_balance = unknown:
## :...existing_credits > 1: No (15.7)
## : existing_credits <= 1:
## : :...months_loan_duration > 42: No (8.6)
## : months_loan_duration <= 42:
## : :...foreign_worker = no: No (3.5)
## : foreign_worker = yes:
## : :...age <= 41: Yes (25.5/6.6)
## : age > 41: No (10.8/1.5)
## savings_balance = < 100 DM:
## :...job = unskilled resident:
## :...property in {building society savings,other,
## : : real estate}: No (74.3/23.8)
## : property = unknown/none: Yes (4.6)
## job in {mangement self-employed,skilled employee,
## : unemployed non-resident}:
## :...other_debtors in {co-applicant,guarantor}: No (31.6/13.7)
## other_debtors = none:
## :...residence_history <= 1: No (46.4/19.6)
## residence_history > 1:
## :...credit_history in {delayed,fully repaid,
## : fully repaid this bank}: Yes (36.8/8.4)
## credit_history = critical:
## :...property = building society savings: No (13)
## : property in {other,real estate,unknown/none}:
## : :...telephone = none: Yes (13.3/2.5)
## : telephone = yes:
## : :...property in {other,unknown/none}: No (23.2/8.7)
## : property = real estate: Yes (4.7)
## credit_history = repaid:
## :...personal_status in {divorced male,
## : married male}: Yes (10.1/0.4)
## personal_status = female:
## :...age <= 49: Yes (39.1/8.3)
## : age > 49: No (4.3)
## personal_status = single male:
## :...employment_length = > 7 yrs: Yes (13.4)
## employment_length in {0 - 1 yrs,1 - 4 yrs,
## : 4 - 7 yrs,unemployed}:
## :...installment_rate <= 3: No (23.9/6.7)
## installment_rate > 3: Yes (19/5.2)
##
##
## Evaluation on training data (800 cases):
##
## Trial Decision Tree
## ----- ----------------
## Size Errors
##
## 0 42 113(14.1%)
## 1 35 178(22.3%)
## 2 34 171(21.4%)
## 3 25 180(22.5%)
## 4 45 182(22.8%)
## 5 41 155(19.4%)
## 6 44 169(21.1%)
## 7 23 228(28.5%)
## 8 38 157(19.6%)
## 9 26 149(18.6%)
## boost 46( 5.8%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 556 5 (a): class No
## 41 198 (b): class Yes
##
##
## Attribute usage:
##
## 100.00% checking_balance
## 100.00% months_loan_duration
## 100.00% amount
## 100.00% foreign_worker
## 99.88% other_debtors
## 99.50% purpose
## 98.13% job
## 97.25% employment_length
## 93.75% savings_balance
## 93.25% installment_plan
## 91.88% age
## 79.13% credit_history
## 72.13% property
## 63.88% residence_history
## 58.25% installment_rate
## 55.50% personal_status
## 52.00% existing_credits
## 42.13% housing
## 33.38% dependents
## 20.63% telephone
##
##
## Time: 0.1 secs
c50决策树借款风险的更多相关文章
- PMP考试相关
知识点:http://www.cnblogs.com/allenblogs/tag/PMbook/ 读书笔记: http://www.cnblogs.com/lensin/category/45538 ...
- 【CSWS2014 Summer School】大数据下的游戏营销模式革新-邓大付
大数据下的游戏营销模式革新 邓大付博士腾讯专家工程师 Bio:毕业于华中科技大学,现任腾讯IEG运营部数据中心技术副总监,负责腾讯游戏的数据挖掘相关工作,包括有用户画像,推荐系统,基础算法研究等.主要 ...
- 【P2P网贷新手入门】详解借款标的种类及其风险
不同于国外的网贷平台以信用借款标为主,在中国,我们投资网贷平台会看到多样借款标,而投资人往往弄不清自己投资的标属于什么类型的标,特点怎么样,风险如何. 抵 押 标 定义:借款人用自己的房屋车辆等实物在 ...
- 决策树及R语言实现
决策树是什么 决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制.例如,我们要对"这是好瓜吗?"这样的问题进行决策时,通常会进行一系列的判断或" ...
- 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...
- 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...
- P2P风险淮安样本:5000万连锁漩涡牵出银行内案
春节后第一个工作周,来自南京的投资人李宏(化名)频繁游走于两个维权群,因为在江苏淮安的网贷平台投资经历,他结识了136名P2P投资人. 在他们的QQ群里,每个投资人的备注均为网名+投资额,如他自己的“ ...
- 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...
- 决策树学习笔记(Decision Tree)
什么是决策树? 决策树是一种基本的分类与回归方法.其主要有点事模型具有可得性,分类速度快.学习时,利用训练数据,根据损失函数最小化原则建立决策树模型:预测时,对新数据,利用决策树模型进行分类. 决策树 ...
随机推荐
- LINUX软件包的安装、升级、删除
1.安装和升级一个rpm 包: [root@localhost beinan]#rpm -vih file.rpm 注:这个是用来安装一个新的rpm 包: [root@localhost beinan ...
- LeetCode409Longest Palindrome最长回文串
给定一个包含大写字母和小写字母的字符串,找到通过这些字母构造成的最长的回文串. 在构造过程中,请注意区分大小写.比如 "Aa" 不能当做一个回文字符串. 注意: 假设字符串的长度不 ...
- 【vue】vue-znly
老规矩,放下博主的项目地址:https://github.com/wohaiwo/vue-znly 我一直在想给那些开源者取什么名字比较好,怎样才对得起他们开源项目的精神,后来想想,还是叫博主吧.有的 ...
- 百度地图JavaScript API申请密钥注意要点
1.应用类型:浏览器端 2.启用服务:Javascript API要勾选 3.IP白名单:*即可
- <br>和换行符/n
我们知道<br>是html的标签,表示文本另起一行.经常在html的body标签里面看到br,起到另起一行的作用. 而换行符\n是javascript的转义字符,表示将输出一个换行符,用于 ...
- WPF 实现简单的跑马灯
本文用WPF的动画实现一个简单的跑马灯 xmal: <Window x:Class="wpfstatusBar.MainWindow" xmlns="http:// ...
- WPF 单个模块换肤
xmal: <Window x:Class="wpfSkin.MainWindow" xmlns="http://schemas.microsoft.com/win ...
- 超高频率问题之信息: Illegal access: this web application instance has been stopped already. Could not load . The eventual following stack trace is caused by an error thrown for debugging purposes as well as
出现频率非常高,目前还不确定具体是什么原因导致
- oracle习题-emp表查询练习
emp表查询练习 1 查询emp表的全部记录 Select * from emp; 2 查询出每个雇员的编号.姓名.基本工资 Select empno,ename,sal from emp; 3 查询 ...
- golang学习资料必备
核心资料库 https://github.com/yangwenmai/learning-golang