以前只是知道shellcode就是一段恶意代码,直到今天学习了shellcode的知识,才发现这东西真是博大精深。同时也学习到了一些新的指令,在这里记录一下。

  通常pwn题目就是为了拿到shell,目前我理解的system其实就是系统调用的一个封装。对于获取shell的获取,需要执行这么一个命令。

execve("/bin/sh",null,null)

  这行代码用系统调用来执行,大概意思就是(这里用我理解的伪代码)int 0x80 (eax,ebx,ecx,edx......),意思就是,先把数据保存在寄存器中,然后调用int 0x80,就是调用了系统函数,网上有一份系统调用的表格,我挑几个常用的函数粘贴过来。

%eax

Name

Source

%ebx

%ecx

%edx

%esx

%edi

1

sys_exit

kernel/exit.c

int

-

-

-

-

3

sys_read

fs/read_write.c

unsigned int

char *

size_t

-

-

4

sys_write

fs/read_write.c

unsigned int

const char *

size_t

-

-

5

sys_open fs/open.c const char * int  int - -
11 sys_execve arch/i386/kernel/process.c struct pt_regs - - - -

  这里我们试着写一个常用的shellcode。

  假设0x400500这个地址存放着“/bin/sh”的字符串。

  

1 mov eax,0xb
2 lea ebx,[0x400500]
3 mov ecx,0x0
4 mov edx,0x0
5 int 0x80

  这就是最简单的shellcode 了,有时候为了免杀,躲过一些保护。经常将shellcode写成其他形式的。例如这种:

 1 jmp sh
2 run:
3 pop ebx
4 mov BYTE [ebp+7],0
5 xor eax,eax
6 mov al,11
7 xor ecx,ecx
8 xor edx,edx
9 int 0x80
10 sh:
11 call run
12 db"/bin/sh"

  我们试着来编写一个shellcode的文件,试试,顺便还能学习很多东西。

  编译汇编需要装一个nasm,用这个命令就可以(ubuntu):sudo apt-get install nasm

  编译的命令是:nasm a.asm -o a.o -felf32

  生成a.o,这个文件其实是包含一些文件头呀什么乱七八杂的东西,并不是我们单纯输入的代码,这个时候用objcopy命令来去除那些没用的代码。命令是:objcopy -O binary a.o code

  我们来对比一个两个文件的大小,和看看里面的内容。

  

  明显的看出第一个比第二个代码量少了很多很多。

  顺便再学个命令:xxd可以用来显示一些二进制文件。加上参数 -i后显示是这样的。

  

   上面的这个代码有什么用呢。。。这里是可以套用一个模板,来生成可执行文件的。

  模板如下:

  

 1 unsigned char code[] = {
2 0xeb, 0x0f, 0x5b, 0xc6, 0x45, 0x07, 0x00, 0x31, 0xc0, 0xb0, 0x0b, 0x31,
3 0xc9, 0x31, 0xd2, 0xcd, 0x80, 0xe8, 0xec, 0xff, 0xff, 0xff, 0x2f, 0x62,
4 0x69, 0x6e, 0x2f, 0x73, 0x68
5 };
6
7 typedef int (*CODE)();
8
9 int main(){
10 ((CODE)code)();
11 }

 

  code数组里面存的就是我们生成的shellcode。

  再用gcc的命令生成可执行文件试试,命令为:gcc code.c -o code -m32 -zexecstack

  看一下效果。

  

  当然还有一种方法,是将去除头文件信息的那个文件生成一个.h的头文件。

  命令如下:xdd -i scode > scode.h

  接下来就是写c代码了。代码很简单,和刚刚几乎一样。

  

1 #include "code.h"
2
3 typedef int (*CODE)();
4
5 int main(){
6
7 ((CODE)code)();
8
9 }

  再次编译一下,发现还是可以拿到shell,好了,今天就到这里,感觉学到了很多。

初识shellcode的更多相关文章

  1. 跟羽夏学 Ghidra ——初识

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.本人非计算机专业,可能对本教程涉及的事物没有了解的足够深入,如有错误,欢迎批评指正. 如有好的建议,欢迎反馈.码字不易,如果本篇文章 ...

  2. Android动画效果之初识Property Animation(属性动画)

    前言: 前面两篇介绍了Android的Tween Animation(补间动画) Android动画效果之Tween Animation(补间动画).Frame Animation(逐帧动画)Andr ...

  3. 初识Hadoop

    第一部分:              初识Hadoop 一.             谁说大象不能跳舞 业务数据越来越多,用关系型数据库来存储和处理数据越来越感觉吃力,一个查询或者一个导出,要执行很长 ...

  4. python学习笔记(基础四:模块初识、pyc和PyCodeObject是什么)

    一.模块初识(一) 模块,也叫库.库有标准库第三方库. 注意事项:文件名不能和导入的模块名相同 1. sys模块 import sys print(sys.path) #打印环境变量 print(sy ...

  5. 初识IOS,Label控件的应用。

    初识IOS,Label控件的应用. // // ViewController.m // Gua.test // // Created by 郭美男 on 16/5/31. // Copyright © ...

  6. UI篇(初识君面)

    我们的APP要想吸引用户,就要把UI(脸蛋)搞漂亮一点.毕竟好的外貌是增进人际关系的第一步,我们程序员看到一个APP时,第一眼就是看这个软件的功能,不去关心界面是否漂亮,看到好的程序会说"我 ...

  7. Python导出Excel为Lua/Json/Xml实例教程(一):初识Python

    Python导出Excel为Lua/Json/Xml实例教程(一):初识Python 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出 ...

  8. 初识SpringMvc

    初识SpringMvc springMvc简介:SpringMVC也叫Spring Web mvc,属于表现层的框架.Spring MVC是Spring框架的一部分,是在Spring3.0后发布的 s ...

  9. 初识redis数据类型

    初识redis数据类型 1.String(字符串) string是redis最基本的类型,一个key对应一个value. string类型是二进制安全的.意思是redis的string可以包含任何数据 ...

随机推荐

  1. [loj6278]数列分块入门2

    做法1 以$K$为块大小分块,并对每一个块再维护一个排序后的结果,预处理复杂度为$o(n\log K )$ 区间修改时将整块打上标记,散块暴力修改并归并排序,单次复杂度为$o(\frac{n}{K}+ ...

  2. [loj3069]整点计数

    1.基础知识 定义 定义1.1(高斯整数):$\mathbb{Z}[i]=\{a+bi\mid a,b\in Z\}$(其中$i$为虚数单位,即$i^{2}=-1$) 定义1.2(范数):$N(\al ...

  3. [atAGC045B]01 Unbalanced

    将0变为-1后求前缀和,那么$s$的价值即为最大的前缀和-最小的前缀和(特别的,空前缀的前缀和为0) 令$f(x)$表示当最大的前缀和不大于$x$时,最小的前缀和最大是多少,答案即为$\min_{x} ...

  4. [atAGC106F]Figures

    考虑purfer序列,若生成树的pufer序列为$p_{i}$,则答案为$(\prod_{i=1}^{n}a_{i})\sum_{p}\prod_{i=1}^{n}\frac{(a_{i}-1)!}{ ...

  5. IDEA修改XML注释风格

    作为一个强迫症患者,每次想在xml文件用快捷键注释的时候,它自动生成的注释一直都是这样的:这令我非常难受,于是每次我都要把光标移到前面,然后再Tab以下,让它变成这样可是每次都这样,好麻烦啊,如果自己 ...

  6. 数值最优化:一阶和二阶优化算法(Pytorch实现)

    1 最优化概论 (1) 最优化的目标 最优化问题指的是找出实数函数的极大值或极小值,该函数称为目标函数.由于定位\(f(x)\)的极大值与找出\(-f(x)\)的极小值等价,在推导计算方式时仅考虑最小 ...

  7. 洛谷 P5527 - [Ynoi2012] NOIP2016 人生巅峰(抽屉原理+bitset 优化背包)

    洛谷题面传送门 一道挺有意思的题,想到了某一步就很简单,想不到就很毒瘤( 首先看到这样的设问我们显然可以想到背包,具体来说题目等价于对于每个满足 \(i\in[l,r]\) 的 \(a_i\) 赋上一 ...

  8. DirectX12 3D 游戏开发与实战第五章内容

    渲染流水线 学习目标: 了解用于在2D图像中表现出场景立体感和空间深度感等真实效果的关键因素 探索如何用Direct3D表示3D对象 学习如何建立虚拟摄像机 理解渲染流水线,根据给定的3D场景的几何描 ...

  9. python14异常处理

    def test_div(num1,num2): return num1 / num2 if __name__ == "__main__": try: print(test_div ...

  10. 半天做完的数据报表,YonBuilder只要十几分钟,0代码开发

    进入数字化时代,拍脑袋的决策方式显然不靠谱,一切要靠数据说话.与信息化时代相比,数字化时代的企业对数据的应用更广泛.更深入.为了应对激烈的市场竞争,企业经营决策者们对数据的依赖度越来越高,企业各个业务 ...