题目描述:
读入一个只包含 + ,-,×, / 的非负整数计算表达式,计算该表达式的值。
输入格式:
测试输入包含若干测试用例,每个测试用例占一行,每行不超过200个字符,整数和运草符之间用一个空格分隔。没有非法表达式。当一行中只有0时输入结束,相应的结果不要输出。
输出格式:
对每个测试用例输出1行,即该表达式的值,精确到小数点后2位。
样例输入:
30 / 90 - 26 + 97 - 5 - 6 - 13 / 88 * 6 + 51 / 29 + 79 * 87 + 57 * 92
0
样例输出:
12178.21

思路
题目给出的是中缀表达式,所以要计算它的值主要是两个步骤:(如果不懂什么是前缀表达式和后缀表达式请看:https://www.cnblogs.com/chensongxian/p/7059802.htmlhttps://www.cnblogs.com/zzliu/p/10801113.html
①中缀表达式转后缀表达式。
②计算后缀表达式。
下面分别讲一下这两步。

步骤1:中缀表达式转后缀表达式
①设立一个操作符栈,用以临时存放操作符;设立一个数组或者队列,用以存放后缀表
达式。
②从左至右扫描中缀表达式,如果碰到操作数(注意:操作数可能不止一位,因此需要
一位一位读入然后合并在一起,具体实现见代码),就把操作数加入后缀表达式中。
③如果碰到操作符op,就将其优先级与操作符栈的栈顶操作符的优先级比较。
(1)若op的优先级高于栈顶操作符的优先级,则压入操作符栈。
(2)若op的优先级低于或等于栈顶操作符的优先级,则将操作符栈的操作符不断弹出到
后缀表达式中,直到op的优先级高于栈顶操作符的优先级。
④重复上述操作,直到中缀表达式扫描完毕,之后若操作符栈中仍有元素,则将它们依
次弹出至后缀表达式中。
(1)所谓操作符的优先级即它们计算的优先级,其中乘法 == 除法 > 加法==减法,在具体实
现上可以用map建立操作符和优先级的映射,优先级可以用数字表示,例如乘法和除法优先
级为1,加法和减法优先级为0。
(2)关于为什么当op高于栈顶时就压入操作符栈,这里举一个例子;
对中缀表达式3 + 2×5,显然如果先计算加法3 + 2会引起错误,必须先计算乘法2×5。当
从左到右扫描时,加号先进入操作符栈,而由于乘号优先级大于加号,其必须先计算,因此
在后缀表达式中乘号必须在加号前面,于是在栈中乘号要比加号更靠近栈顶,以让其先于加
号进入后缀表达式。
(3)关于为什么当op等于栈顶时不能直接压入操作符栈,这里举一个例子:
对中缀表达式2 / 3×4,如果设定优先级相等时直接压入操作符栈,那么算法步骤如下:
a)2进入后缀表达式,当前后缀表达式为2。
b) / 进入操作符栈,当前操作符栈为 /*。
c)3进入后缀表达式,当前后缀表达式为23。
d) * 与操作符栈的栈顶元素 / 比较,相等,压入操作符栈,当前操作符栈为/。
e)4进入后缀表达式,当前后缀表达式为234。
f)中缀表达式扫描完毕,操作符栈非空,将其全部弹入后缀表达式,最终后缀表达式变
为234*/。
g)计算该后缀表达式,发现其实变成了2 / (3×4),显然这跟原来中缀表达式的计算结果
完全不同。
(4)本题没有出现括号,但是如果出现括号,处理方法也很简单,遇到括号时:

,如果是左括号‘(’,就压入操作符栈;如果是右括号‘)’,就把操作符栈里的元
素不断弹出到后缀表达式直到碰到左括号‘(’  ,此时将这一对括号丢弃。

步骤2:计算后缀表达式
从左到右扫描后缀表达式,如果是操作数,就压入栈;如果是操作符,就连续弹出两个操作数(注意:后弹出的是第一操作数,先弹出的是第二操作数),然后进行操作符的操作,
生成的新操作数压入栈中。反复直到后缀表达式扫描完毕,这时栈中只会存在一个数,就是最终的答案。
(1)注意除法可能导致浮点数,因此操作数类型要设成浮点型。
(2)题目中说肯定是合法表达式,因此上面操作一定能够成功。但如果题目表明可能出现
非法表达式,那就要注意每一步使用的对象是否合法。

#include<iostream>
#include<string>
#include<stack>
#include<fstream>
#include<queue>
#include<map>
using namespace std; struct node {
double num;
char op;
bool flag;
}; string str; //中缀表达式
stack<node> s; //操作符栈
queue<node> q; //后缀表达式序列
map<char, int> oop; //操作符和优先级的映射 void change() { //将中缀表达式转换为后缀表达式
node temp;
for (int i = 0; i < str.length();) {
if (str[i] >= '0' && str[i] <= '9') {
temp.flag = true;
temp.num = str[i++] - '0';//记录这个操作数的第一个数位
while (i < str.length() && str[i] >= '0' && str[i] <= '9') {
temp.num = temp.num * 10 + (str[i] - '0');//更新这个操作数
i++;
}
q.push(temp);
}
else {
temp.flag = false;
//只要操作符栈的栈顶元素比该操作符优先级高。
//就把操作符栈顶元素弹出到后缀表达式的队列中。
while (!s.empty() && oop[str[i]] <= oop[s.top().op]) {
q.push(s.top());
s.pop();
}
temp.op = str[i];
s.push(temp);//将操作符压入栈。
i++;
}
}
while (!s.empty()) {//如果操作符栈中还有元素就把他弹出到后缀表达式队列中。
q.push(s.top());
s.pop();
}
}
double cal() {//计算后缀表达式
double temp1, temp2;
node cur, temp;
while (!q.empty()) {//只要后缀表达式非空
cur = q.front();//cur记录首元素
q.pop();
if (cur.flag == true) s.push(cur);//如果是数字直接入栈。
else {//如果是操作符
temp2 = s.top().num;//弹出第二操作数
s.pop();,
temp1 = s.top().num;//弹出第一操作数,第一操作数在运算符前面。即次顶元素在运算符的前面,这一点与前缀表达式不同。
s.pop();
temp.flag = true;
if (cur.op == '+') temp.num = temp1 + temp2;//做加法
else if (cur.op == '-') temp.num = temp1 - temp2;//做减法
else if (cur.op == '*') temp.num = temp1 * temp2;//做乘法
else temp.num = temp1 / temp2;//做除法
s.push(temp);//再将这个操作数压入栈
}
}
return s.top().num;//栈顶元素便是后缀表达式的值
} int main() {
oop['+'] = oop['-'] = 1;//设定操作符的优先级
oop['*'] = oop['/'] = 2;
// freopen("d://in.txt","r",stdin);
while (getline(cin, str), str != "0") {
for (string::iterator it = str.begin(); it != str.end(); it++) {
if (*it == ' ') str.erase(it);//把表达式中的空格全部去掉。
}
while (!s.empty()) s.pop();//将栈初始化
change();//将中缀表达式转化为后缀表达式
printf("%.2f\n", cal());//计算并 输出后缀表达式的值
}
return 0;
}

//若中缀表达式中存在着括号:
void change() { //将中缀表达式转换为后缀表达式
node temp;
for (int i = 0; i < str.length();) {
if (str[i] == '(') {
temp.op = '(';
s.push(temp);
i++;
}
else if (str[i] == ')') {
while (s.top().op != '(') {
q.push(s.top());
s.pop();
}
s.pop();
i++;
}
else if (str[i] >= '0' && str[i] <= '9') {
temp.flag = true;
temp.num = str[i++] - '0';//记录这个操作数的第一个数位
while (i < str.length() && str[i] >= '0' && str[i] <= '9') {
temp.num = temp.num * 10 + (str[i] - '0');//更新这个操作数
i++;
}
q.push(temp);
}
else {
temp.flag = false;
//只要操作符栈的栈顶元素比该操作符优先级高。
//就把操作符栈顶元素弹出到后缀表达式的队列中。
while (!s.empty() && oop[str[i]] <= oop[s.top().op]) {
q.push(s.top());
s.pop();
}
temp.op = str[i];
s.push(temp);//将操作符压入栈。
i++;
}
}
while (!s.empty()) {//如果操作符栈中还有元素就把他弹出到后缀表达式队列中。
q.push(s.top());
s.pop();
}
}

前缀表达式是从右至左扫描中缀表达式的,如果中缀表达式要转换为前缀表达式不太方便。

若将中缀表达式转换为前缀表达式

步骤一

  1. 初始化两个栈:运算符栈s1,储存中间结果的栈s2(上面转换为后缀表达式时采用的是队列的方式储存后缀表达式,如果也采用栈的形式的话,输出结果的逆序才是后缀表达式)
  2. 从右至左扫描中缀表达式
  3. 遇到操作数时,将其压入s2
  4. 遇到运算符时,比较其与s1栈顶运算符的优先级
    1. 如果s1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈
    2. 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入s1
    3. 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较
  5. 遇到括号时
    1. 如果是右括号“)”,则直接压入s1
    2. 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃
  6. 重复步骤2至5,直到表达式的最左边
  7. 将s1中剩余的运算符依次弹出并压入s2。
  8. 依次弹出s2中的元素并输出,结果即为中缀表达式对应的前缀表达式。

前缀表达式的计算机求值:

从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 和 次顶元素,栈顶元素在运算符前这一点与后缀运算符不同),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。

codeup 1918 简单计算器的更多相关文章

  1. 1.C#WinForm基础制作简单计算器

    利用c#语言编写简单计算器: 核心知识点: MessageBox.Show(Convert.ToString(comboBox1.SelectedIndex));//下拉序号 MessageBox.S ...

  2. 菜鸟学Android编程——简单计算器《一》

    菜鸟瞎搞,高手莫进 本人菜鸟一枚,最近在学Android编程,网上看了一些视频教程,于是想着平时手机上的计算器应该很简单,自己何不尝试着做一个呢? 于是就冒冒失失的开撸了. 简单计算器嘛,功能当然很少 ...

  3. PAT 06-1 简单计算器

    想看一般简单计算器实现的看客不好意思了,这不是你想要点东西,此处题设为“只能进行加减乘除”.“都是整数”.”优先级相同“和"从左到右".此题来自PAT(http://www.pat ...

  4. php大力力 [005节] php大力力简单计算器001

    2015-08-22 php大力力005. php大力力简单计算器001: 上网看视频,看了半天,敲击代码,如下: <html> <head> <title>简单计 ...

  5. PHP实现简单计算器

    <!--简单的计算器--> <!DOCTYPE html> <html> <head> <title>PHP实现简单计算器</titl ...

  6. c#部分---网吧充值系统;简易的闹钟;出租车计费;简单计算器;对战游戏;等额本金法计算贷款还款利息等;随机生成10个不重复的50以内的整数;推箱子;

    网吧充值系统namespace ConsoleApplication1 { class Program { struct huiyuan { public string name; public st ...

  7. JavaWeb学习记录(二十)——Model1模式(javaBean+jsp)实现简单计算器案例

    ¨JSP技术提供了三个关于JavaBean组件的动作元素,即JSP标签,它们分别为: ¨<jsp:useBean>标签:用于在JSP页面中查找或实例化一个JavaBean组件. ¨< ...

  8. 一个用WPF做的简单计算器源代码

    一.界面设计XAML代码 <Window x:Class="fengjisuanqi.MainWindow" xmlns="http://schemas.micro ...

  9. hdu 1237 简单计算器

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1237 简单计算器 Description 读入一个只包含 +, -, *, / 的非负整数计算表达式, ...

随机推荐

  1. PHP实现一个二维码同时支持支付宝和微信支付

    实现思路 生成一个二维码,加入要处理的url连接 在用户扫完码后,在对应的脚本中,判断扫码终端,调用相应的支付 若能够扫码之后能唤起相应app,支付宝要用手机网站支付方式,微信要使用jsapi支付方式 ...

  2. 在gradle中构建java项目

    目录 简介 构建java项目的两大插件 管理依赖 编译代码 管理resource 打包和发布 生成javadoc 简介 之前的文章我们讲到了gradle的基本使用,使用gradle的最终目的就是为了构 ...

  3. 04、数组与Arrays工具类

    目录 前言 一.一维数组 基本认识 内存空间 二.二维数组 基本认识 三.工具类Arrays 前言 去年四月份大一下半学期正式开始学习Java,一路从java基础.数据库.jdbc.javaweb.s ...

  4. 【HTB系列】靶机Access的渗透测试详解

    出品|MS08067实验室(www.ms08067.com) 本文作者:大方子(Ms08067实验室核心成员) Hack The Box是一个CTF挑战靶机平台,在线渗透测试平台.它能帮助你提升渗透测 ...

  5. fail模块场景(ansible)

    更多见博客 : https://blog.csdn.net/qq_35887546/article/details/105242720 创建剧本 /home/alice/ansible/lvm.yml ...

  6. 阿里云linux安装nginx,亲测有效

    系统平台:CentOS release 6.6 (Final) 64位. 一.安装编译工具及库文件 yum -y install make zlib zlib-devel gcc-c++ libtoo ...

  7. Vue的学习总结之---Vue项目 前后端分离模式解决开发环境的跨域问题

    原文:https://blog.csdn.net/localhost_1314/article/details/83623526 在前后端分离的web开发中,我们与后台联调时,会遇到跨域的问题. 比如 ...

  8. SpringBoot读取配置文件的内容

    1.@Value读取 在springboot项目中,如果要读取配置文件application.properties或application.yml文件的内容,可以使用自带的注解@Value.以prop ...

  9. Java并发之ThreadPoolExecutor源码解析(三)

    Worker 先前,笔者讲解到ThreadPoolExecutor.addWorker(Runnable firstTask, boolean core),在这个方法中工作线程可能创建成功,也可能创建 ...

  10. Python - Asyncio模块实现的生产消费者模型

    [原创]转载请注明作者Johnthegreat和本文链接 在设计模式中,生产消费者模型占有非常重要的地位,这个模型在现实世界中也有很多有意思的对应场景,比如做包子的人和吃包子的人,当两者速度不匹配时, ...