杂项之pymysql连接池

本节内容

  1. 本文的诞生
  2. 连接池及单例模式
  3. 多线程提升
  4. 协程提升
  5. 后记

1.本文的诞生

由于前几天接触了pymysql,在测试数据过程中,使用普通的pymysql插入100W条数据,消耗时间很漫长,实测990s也就是16.5分钟左右才能插完,于是,脑海中诞生了一个想法,能不能造出一个连接池出来,提升数据呢?就像一根管道太小,那就多加几根管道看效果如何呢?于是。。。前前后后折腾了将近一天时间,就有了本文的诞生。。。

2.连接池及单例模式

先说单例模式吧,为什么要在这使用单例模式呢?使用单例模式能够节省资源。

其实单例模式没有什么神秘的,简单的单例模式实现其实就是在类里面定义一个变量,再定义一个类方法,这个类方法用来为调用者提供这个类的实例化对象。(ps:个人对单例模式的一点浅薄理解...)

那么连接池是怎么回事呢?原来使用pymysql创建一个conn对象的时候,就已经和mysql之间创建了一个tcp的长连接,只要不调用这个对象的close方法,这个长连接就不会断开,这样,我们创建了一组conn对象,并将这些conn对象放到队列里面去,这个队列现在就是一个连接池了。

现在,我们先用一个连接,往数据库中插入100W条数据,下面是源码:

 import pymysql
import time
start=time.time()
conn = pymysql.connect(host="192.168.10.103",port=3306,user="root",passwd="",db="sql_example",charset="utf8")
conn.autocommit(True) # 设置自动commit
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) # 设置返回的结果集用字典来表示,默认是元祖
data=(("男",i,"张小凡%s" %i) for i in range(1000000)) # 伪造数据,data是个生成器
cursor.executemany("insert into tb1(gender,class_id,sname) values(%s,%s,%s)",data) # 可以使用executemany执行多条sql
# conn.commit()
cursor.close()
conn.close()
print("totol time:",time.time()-start)

执行结果为:

totol time: 978.7649309635162

3.多线程提升

使用多线程,在启动时创建一组线程,每个线程去连接池里面获取一个连接,然后插入数据,这样将会大大提升执行sql的速度,下面是使用多线程实现的连接池源码:

 from gevent import monkey
monkey.patch_all() import threading import pymysql
from queue import Queue
import time class Exec_db: __v=None def __init__(self,host=None,port=None,user=None,passwd=None,db=None,charset=None,maxconn=5):
self.host,self.port,self.user,self.passwd,self.db,self.charset=host,port,user,passwd,db,charset
self.maxconn=maxconn
self.pool=Queue(maxconn)
for i in range(maxconn):
try:
conn=pymysql.connect(host=self.host,port=self.port,user=self.user,passwd=self.passwd,db=self.db,charset=self.charset)
conn.autocommit(True)
# self.cursor=self.conn.cursor(cursor=pymysql.cursors.DictCursor)
self.pool.put(conn)
except Exception as e:
raise IOError(e) @classmethod
def get_instance(cls,*args,**kwargs):
if cls.__v:
return cls.__v
else:
cls.__v=Exec_db(*args,**kwargs)
return cls.__v def exec_sql(self,sql,operation=None):
"""
执行无返回结果集的sql,主要有insert update delete
"""
try:
conn=self.pool.get()
cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)
response=cursor.execute(sql,operation) if operation else cursor.execute(sql)
except Exception as e:
print(e)
cursor.close()
self.pool.put(conn)
return None
else:
cursor.close()
self.pool.put(conn)
return response def exec_sql_feach(self,sql,operation=None):
"""
执行有返回结果集的sql,主要是select
"""
try:
conn=self.pool.get()
cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)
response=cursor.execute(sql,operation) if operation else cursor.execute(sql)
except Exception as e:
print(e)
cursor.close()
self.pool.put(conn)
return None,None
else:
data=cursor.fetchall()
cursor.close()
self.pool.put(conn)
return response,data def exec_sql_many(self,sql,operation=None):
"""
执行多个sql,主要是insert into 多条数据的时候
"""
try:
conn=self.pool.get()
cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)
response=cursor.executemany(sql,operation) if operation else cursor.executemany(sql)
except Exception as e:
print(e)
cursor.close()
self.pool.put(conn)
else:
cursor.close()
self.pool.put(conn)
return response def close_conn(self):
for i in range(self.maxconn):
self.pool.get().close() obj=Exec_db.get_instance(host="192.168.10.103",port=3306,user="root",passwd="",db="sql_example",charset="utf8",maxconn=10) def test_func(num):
data=(("男",i,"张小凡%s" %i) for i in range(num))
sql="insert into tb1(gender,class_id,sname) values(%s,%s,%s)"
print(obj.exec_sql_many(sql,data)) job_list=[]
for i in range(10):
t=threading.Thread(target=test_func,args=(100000,))
t.start()
job_list.append(t)
for j in job_list:
j.join()
obj.close_conn()
print("totol time:",time.time()-start)

显示代码

开启10个连接池插入100W数据的时间:

totol time: 242.81142950057983

开启50个连接池插入100W数据的时间:

totol time: 192.49499201774597

开启100个线程池插入100W数据的时间:

totol time: 191.73923873901367

4.协程提升

使用协程的话,在I/O阻塞时,将会切换到其他任务去执行,这样理论上来说消耗的资源应该会比多线程要少。下面是协程实现的连接池源代码:

 from gevent import monkey
monkey.patch_all()
import gevent import pymysql
from queue import Queue
import time class Exec_db: __v=None def __init__(self,host=None,port=None,user=None,passwd=None,db=None,charset=None,maxconn=5):
self.host,self.port,self.user,self.passwd,self.db,self.charset=host,port,user,passwd,db,charset
self.maxconn=maxconn
self.pool=Queue(maxconn)
for i in range(maxconn):
try:
conn=pymysql.connect(host=self.host,port=self.port,user=self.user,passwd=self.passwd,db=self.db,charset=self.charset)
conn.autocommit(True)
# self.cursor=self.conn.cursor(cursor=pymysql.cursors.DictCursor)
self.pool.put(conn)
except Exception as e:
raise IOError(e) @classmethod
def get_instance(cls,*args,**kwargs):
if cls.__v:
return cls.__v
else:
cls.__v=Exec_db(*args,**kwargs)
return cls.__v def exec_sql(self,sql,operation=None):
"""
执行无返回结果集的sql,主要有insert update delete
"""
try:
conn=self.pool.get()
cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)
response=cursor.execute(sql,operation) if operation else cursor.execute(sql)
except Exception as e:
print(e)
cursor.close()
self.pool.put(conn)
return None
else:
cursor.close()
self.pool.put(conn)
return response def exec_sql_feach(self,sql,operation=None):
"""
执行有返回结果集的sql,主要是select
"""
try:
conn=self.pool.get()
cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)
response=cursor.execute(sql,operation) if operation else cursor.execute(sql)
except Exception as e:
print(e)
cursor.close()
self.pool.put(conn)
return None,None
else:
data=cursor.fetchall()
cursor.close()
self.pool.put(conn)
return response,data def exec_sql_many(self,sql,operation=None):
"""
执行多个sql,主要是insert into 多条数据的时候
"""
try:
conn=self.pool.get()
cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)
response=cursor.executemany(sql,operation) if operation else cursor.executemany(sql)
except Exception as e:
print(e)
cursor.close()
self.pool.put(conn)
else:
cursor.close()
self.pool.put(conn)
return response def close_conn(self):
for i in range(self.maxconn):
self.pool.get().close() obj=Exec_db.get_instance(host="192.168.10.103",port=3306,user="root",passwd="",db="sql_example",charset="utf8",maxconn=10) def test_func(num):
data=(("男",i,"张小凡%s" %i) for i in range(num))
sql="insert into tb1(gender,class_id,sname) values(%s,%s,%s)"
print(obj.exec_sql_many(sql,data)) start=time.time()
job_list=[]
for i in range(10):
job_list.append(gevent.spawn(test_func,100000)) gevent.joinall(job_list) obj.close_conn() print("totol time:",time.time()-start)

显示代码

开启10个连接池插入100W数据的时间:

totol time: 240.16892313957214

开启50个连接池插入100W数据的时间:

totol time: 202.82087111473083

开启100个线程池插入100W数据的时间:

totol time: 196.1710569858551

5.后记

统计结果如下:

单线程一个连接使用时间:978.76s

  10个连接池 50个连接池 100个连接池
多线程版 242.81s 192.49s 191.74s
协程版 240.17s 202.82s 196.17s

通过统计结果显示,通过协程和多线程操作连接池插入相同数据,相对一个连接提升速度明显,但是在将连接池开到50以及100时,性能提升并没有想象中那么大,这时候,瓶颈已经不在网络I/O上了,而在数据库中,mysql在大量连接写入数据时,也会有锁的产生,这时候就需要优化数据库的相关设置了。

在对比中显示多线程利用线程池和协程利用线程池的性能差不多,但是多线程的开销比协程要大。

和大神讨论过,在项目开发中需要考虑到不同情况使用不同的技术,多线程适合使用在连接量较大,但每个连接处理时间很短的情况下,而协程适用于处理大量连接,但同时活跃的链接比较少,并且每个连接的时间量比较大的情况下。

在实际生产应用中,创建连接池可以按需分配,当连接不够用时,在连接池没达到上限的情况下,在连接池里面加入新的连接,在连接池比较空闲的情况下,关闭一些连接,实现这一个操作的原理是通过queue里面的超时时间来控制,当等待时间超过了超时时间时,说明连接不够用了,需要加入新的连接。

杂项之pymysql连接池的更多相关文章

  1. 第一篇:杂项之pymysql连接池

    杂项之pymysql连接池   杂项之pymysql连接池 本节内容 本文的诞生 连接池及单例模式 多线程提升 协程提升 后记 1.本文的诞生 由于前几天接触了pymysql,在测试数据过程中,使用普 ...

  2. pymysql 连接池

    pymysql连接池 import pymysql from DBUtils.PooledDB import PooledDB, SharedDBConnection ''' 连接池 ''' clas ...

  3. python全栈开发day113-DBUtils(pymysql数据连接池)、Request管理上下文分析

    1.DBUtils(pymysql数据连接池) import pymysql from DBUtils.PooledDB import PooledDB POOL = PooledDB( creato ...

  4. Python 使用 PyMysql、DBUtils 创建连接池,提升性能

    转自:https://blog.csdn.net/weixin_41287692/article/details/83413775 Python 编程中可以使用 PyMysql 进行数据库的连接及诸如 ...

  5. MySQL 使用连接池封装pymysql

    备注:1,记得先修改连接的数据库哦,(用navicat更方便一点):2,分开两个py文件写入,运行sqlhelper.py文件 一.在utils.py中写 import pymysqlfrom DBU ...

  6. 连接池的实现 redis例子

    # -*- encoding:utf-8 -*- # import pymysql # # conn = pymysql.connect(host="127.0.0.1", por ...

  7. 利用python list 完成最简单的DB连接池

    先来看查看效果: 在代码连接数据库后,并且执行三条sql后,将mysql直接重启掉,故我们的连接池连接均是不ok的,所以,它会全部删除再抓新的连接下来,重启mysql命令: 关于python代码: # ...

  8. DBUtils--数据库连接池

    介绍 DBUtils是一套Python数据库连接池包,并允许对非线程安全的数据库接口进行线程安全包装. pg大概是是PostgreSQL(基于PyGreSQL)数据库,DB是其他数据库 Steady[ ...

  9. 深入研究sqlalchemy连接池

    简介: 相对于最新的MySQL5.6,MariaDB在性能.功能.管理.NoSQL扩展方面包含了更丰富的特性.比如微秒的支持.线程池.子查询优化.组提交.进度报告等. 本文就主要探索MariaDB当中 ...

随机推荐

  1. html中<radio>单选按钮控件标签用法解析及如何设置默认选中

    <input type="radio" name="radio" value="1">单选1 <input type=&q ...

  2. Java04

      0.面向对象(Object Oriented:OO):     0.OOA(面向对象分析) OOD(面向对象的设计) OOP(面向对象编程)     1.是软件开发方法     2.扩展的领域:数 ...

  3. [连载]《C#通讯(串口和网络)框架的设计与实现》-2.框架的总体设计

    目       录 C#通讯(串口和网络)框架的设计与实现... 1 (SuperIO)- 框架的总体设计... 1 第二章           框架总体的设计... 2 2.1           ...

  4. MongoDB配置服务--MongoDB安装成为windows服务

    MongoDB安装成为windows服务 1.打开命令提示符(最好以管理员的身份打开),然后输入: mongod --logpath "D:\MongoDB\data\log\logs.tx ...

  5. .NET MVC 和 JAVA MVC有什么区别?

    两者的主要区别是编程语言的不同. 最典型的JAVA MVC就是JSP + servlet + javabean的模式.比较好的MVC,老牌的有Struts.Webwork.新兴的MVC 框架有Spri ...

  6. react引用antd的form表单

    引用form是第三方插件ant插件,官网网址:https://ant.design/.用到的antd的版本是@2.0.1.form(https://ant.design/components/form ...

  7. javascript 实现一个回文数字

    写一个方法,让"1234"变成回文数字“1234321”,就是顺着读和倒着读都是一样的:注:不让用reverse()方法: function palindrome(str){ va ...

  8. Android 应用程序集成FaceBook 登录及二次封装

    1.首先在Facebook 开发者平台注册一个账号 https://developers.facebook.com/ 开发者后台  https://developers.facebook.com/ap ...

  9. 基于物理渲染的渲染器Tiberius计划

    既然决定实现一个光栅化软件渲染器,我又萌生了一个念头:实现一个基于物理渲染的渲染器.

  10. 编写Javascript类库(jQuery版) - 进阶者系列 - 学习者系列文章

    这些年主要关注于项目管理方面的工作,编码就比较少了.这几天比较空闲,就想把原来的经验沉淀下来,一个是做好记录,以后如果忘记了还能尽快找回来,第二个是写写博文,算是练练手笔吧. 言归正传,这次写的是Ja ...