1.创建Node结点

class Node {
int value;
Node left;
Node right; public Node(int value) { this.value = value;
} // 返回左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
} // 返回右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
} // 返回 以该结点为根结点的树的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
} //左旋转方法
private void leftRotate() { //创建新的结点,以当前根结点的值
Node newNode = new Node(value);
//把新的结点的左子树设置成当前结点的左子树
newNode.left = left;
//把新的结点的右子树设置成带你过去结点的右子树的左子树
newNode.right = right.left;
//把当前结点的值替换成右子结点的值
value = right.value;
//把当前结点的右子树设置成当前结点右子树的右子树
right = right.right;
//把当前结点的左子树(左子结点)设置成新的结点
left = newNode; } //右旋转
private void rightRotate() {
Node newNode = new Node(value);
newNode.right = right;
newNode.left = left.right;
value = left.value;
left = left.left;
right = newNode;
} // 查找要删除的结点
/**
*
* @param value
* 希望删除的结点的值
* @return 如果找到返回该结点,否则返回null
*/
public Node search(int value) {
if (value == this.value) { // 找到就是该结点
return this;
} else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找
// 如果左子结点为空
if (this.left == null) {
return null;
}
return this.left.search(value);
} else { // 如果查找的值不小于当前结点,向右子树递归查找
if (this.right == null) {
return null;
}
return this.right.search(value);
} } // 查找要删除结点的父结点
/**
*
* @param value
* 要找到的结点的值
* @return 返回的是要删除的结点的父结点,如果没有就返回null
*/
public Node searchParent(int value) {
// 如果当前结点就是要删除的结点的父结点,就返回
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
// 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
if (value < this.value && this.left != null) {
return this.left.searchParent(value); // 向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value); // 向右子树递归查找
} else {
return null; // 没有找到父结点
}
} } @Override
public String toString() {
return "Node [value=" + value + "]";
} // 添加结点的方法
// 递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if (node == null) {
return;
} // 判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
// 如果当前结点左子结点为null
if (this.left == null) {
this.left = node;
} else {
// 递归的向左子树添加
this.left.add(node);
}
} else { // 添加的结点的值大于 当前结点的值
if (this.right == null) {
this.right = node;
} else {
// 递归的向右子树添加
this.right.add(node);
} } //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
if(rightHeight() - leftHeight() > 1) {
//如果它的右子树的左子树的高度大于它的右子树的右子树的高度
if(right != null && right.leftHeight() > right.rightHeight()) {
//先对右子结点进行右旋转
right.rightRotate();
//然后在对当前结点进行左旋转
leftRotate(); //左旋转..
} else {
//直接进行左旋转即可
leftRotate();
}
return ; //必须要!!!
} //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
if(leftHeight() - rightHeight() > 1) {
//如果它的左子树的右子树高度大于它的左子树的高度
if(left != null && left.rightHeight() > left.leftHeight()) {
//先对当前结点的左结点(左子树)->左旋转
left.leftRotate();
//再对当前结点进行右旋转
} //直接进行右旋转即可 rightRotate();
}
} // 中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}

2.定义变量并初始化

private Node root;

public Node getRoot() {
return root;
}

3.查找要删除的结点

public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}

4.查找父结点

public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}

5.返回的 以node 为根结点的二叉排序树的最小结点的值,删除node 为根结点的二叉排序树的最小结点

public int delRightTreeMin(Node node) {
Node target = node;
// 循环的查找左子节点,就会找到最小值
while (target.left != null) {
target = target.left;
}
// 这时 target就指向了最小结点
// 删除最小结点
delNode(target.value);
return target.value;
}

6.删除结点

public void delNode(int value) {
if (root == null) {
return;
} else {
// 1.需求先去找到要删除的结点 targetNode
Node targetNode = search(value);
// 如果没有找到要删除的结点
if (targetNode == null) {
return;
}
// 如果我们发现当前这颗二叉排序树只有一个结点
if (root.left == null && root.right == null) {
root = null;
return;
} // 去找到targetNode的父结点
Node parent = searchParent(value);
// 如果要删除的结点是叶子结点
if (targetNode.left == null && targetNode.right == null) {
// 判断targetNode 是父结点的左子结点,还是右子结点
if (parent.left != null && parent.left.value == value) { // 是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {// 是由子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal; } else { // 删除只有一颗子树的结点
// 如果要删除的结点有左子结点
if (targetNode.left != null) {
if (parent != null) {
// 如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else { // targetNode 是 parent 的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { // 如果要删除的结点有右子结点
if (parent != null) {
// 如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else { // 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
} } }
}

7.添加结点的方法

public void add(Node node) {
if (root == null) {
root = node;// 如果root为空则直接让root指向node
} else {
root.add(node);
}
}

8.中序遍历

public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}

9.测试

public static void main(String[] args) {
//int[] arr = {4,3,6,5,7,8};
//int[] arr = { 10, 12, 8, 9, 7, 6 };
int[] arr = { 10, 11, 7, 6, 8, 9 };
//创建一个 AVLTree对象
AVLTree avlTree = new AVLTree();
//添加结点
for(int i=0; i < arr.length; i++) {
avlTree.add(new Node(arr[i]));
} //遍历
System.out.println("中序遍历");
avlTree.infixOrder(); System.out.println("在平衡处理~~");
System.out.println("树的高度=" + avlTree.getRoot().height()); //3
System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
System.out.println("当前的根结点=" + avlTree.getRoot());//8 }

34.AVL树的更多相关文章

  1. 二叉树之AVL树的平衡实现(递归与非递归)

    这篇文章用来复习AVL的平衡操作,分别会介绍其旋转操作的递归与非递归实现,但是最终带有插入示例的版本会以递归呈现. 下面这张图绘制了需要旋转操作的8种情况.(我要给做这张图的兄弟一个赞)后面会给出这八 ...

  2. AVL树的算法思路整理

    http://www.cnblogs.com/heqile/archive/2011/11/28/2265713.html 看完了<数据结构与算法分析(C++描述)>的4.4节AVL树,做 ...

  3. 数据结构与算法(九):AVL树详细讲解

    数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希 ...

  4. 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)

    二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...

  5. AVL树原理及实现 +B树

    1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好是按照从小到大的顺序或者从大到小的顺序插入的,那么搜索二叉树就对退化成链表,这个时候查找,插入和删除的时间都会 ...

  6. 自已动手作图搞清楚AVL树

    @ 目录 一.背景 二.平衡二分搜索树---AVL树 2.1 AVL树的基本概念 结点 高度 平衡因子 2.2 AVL树的验证 三.旋转操作 3.1 L L--需要通过右旋操作 3.2 R R--需要 ...

  7. AVL树的插入和删除

    一.AVL 树 在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为 1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度 ...

  8. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  9. AVL树原理及实现(C语言实现以及Java语言实现)

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好 ...

随机推荐

  1. centos使用shell脚本定时备份docker中的mysql数据库

    shell脚本 #!/bin/bash #容器ID container_id="6b1faea2b4d7" #登录用户名 mysql_user="root" # ...

  2. JAVA通过经纬度获取两点之间的距离

    private static double EARTH_RADIUS = 6378.137; private static double rad(double d) { return d * Math ...

  3. JAVA中价格金额的存储类型

    在java项目中,我们会遇到价格.金额的数据,这时候我们java中应该用BigDecimal类型,数据库用decimal类型, 长度可以自定义, 如18; 小数点我们项目中用的是2, 保留2位小数. ...

  4. vue的一些细节

    注意区别 //鼠标滚轮事件 @wheel = "demo"demo()注意执行顺序,用户滚动鼠标滚轮,触发事件执行demo()函数,函数执行完毕后,页面滚动条滚动所以,当demo( ...

  5. c++设计模式概述之访问者

    代码写的不够规范,目的是为了缩短篇幅,实际中请注意. 参看: http://c.biancheng.net/view/1397.html 1.概述 类比生活中的场景,购物商场中的商品.顾客.收营员.商 ...

  6. 【LeetCode】895. Maximum Frequency Stack 解题报告(Python)

    [LeetCode]895. Maximum Frequency Stack 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxueming ...

  7. 【LeetCode】241. Different Ways to Add Parentheses 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:递归构建所有表达式 方法二:分而治之 日期 ...

  8. C. Hongcow Builds A Nation

    C. Hongcow Builds A Nation time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  9. Multiple(poj1465)

    Multiple Time Limit: 1000MS   Memory Limit: 32768K Total Submissions: 7183   Accepted: 1540 Descript ...

  10. Tomcat 组成与工作原理

    开源的 Java Web 应用服务器,实现了 Java EE(Java Platform Enterprise Edition)的部分技术规范,比如 Java Servlet.Java Server ...