令$d=\gcd(a,b)$,可以发现$c|(ax+by)$等价于$lcm(c,d)|(ax+by)$,因此不妨令$c'=lcm(c,d)$,然后将$a$、$b$和$c$同时除以$d$

接下来设$(a,c)=d_{1}$,根据整除的传递性有$d_{1}|(ax+by)$,由于$d_{1}|ax$,可得$d_{1}|by$,又因为$(b,d_{1})=1$,所以$d_{1}|y$

因此,可以令$y'=\lfloor\frac{y}{d}\rfloor$,然后再将$a$和$c$同除以$d_{1}$,$b$和$c$类似,最后可以令$a$、$b$和$c$两两互素

令$D\equiv \frac{a}{b}(mod\ c)$(由于$(b,c)=1$因此存在),对于$ax+by\equiv 0(mod\ c)$,可得$y\equiv -xD(mod\ c)$,取其中最小非负整数解为$Y_{x}$(特别的,当$x=0$时取$Y_{x}=c$)

$x$的范围为$[0,c]$,同时对于$x_{1}<x_{2}$,若$Y_{x_{1}}\le Y_{x_{2}}$则后者没有意义,可以通过维护一个栈,从小到大枚举$x$,若栈顶小于$Y_{x}$则将$Y_{x}$加入栈中

构造:对于一个二维平面,有一个点$(x',y')$(初始为$(0,0)$),每一次令$x'$和$y'$分别加1,然后若$x'>c$则$x'$减去$c$,若$y'\ge D$(注意等号不同)则$y'$减去$D$

当$y'=0$时,其实就对应于$x=\frac{times}{D}$和$Y_{x}=c-x'$(其中$times$为加1的次数),前者依次遍历所有$x$,因此即若$c-x'$小于栈顶时就将$c-x'$压入栈中

但此时这样的复杂度反而退化为$o(cD)$,因此考虑递归缩小$c$和$D$的范围

注意到这样两个性质:

1.当我们位于$(x',y')$,若$x'>0$且$y'+c<D$,则$c$步后必然移动到$(x',y'+c)$,由此可以令$D$不断减去$c$直至$D\le c$

注意两个细节:1.当$x'=0$,$c$步后会移动到$(c,y'+D)$;2.当$c=D$时不能减,原因同上

2.当我们位于$(x',y')$,若$x'+D\le c$且$c-(x'+D-y')$不小于栈顶则$D$步后会移动到$(x'+D,y')$,因此考虑令$t=\lfloor\frac{c}{D}\rfloor$,当$c-tD$加入栈后,可以看作$c'=c-tD$的子问题

简单模拟前面几步,不难发现一开始栈中会插入$c,c-D,...,c-tD$,因此先将这个插入后即可缩小$c$

(这里的栈其实是有重复元素的,这次的$c-tD$和下一次的$c'$是相同的,暂时看作两个不同的数)

这就是一个欧几里得的过程,因此复杂度为$o(\log_{2}c)$,且栈中至多有$o(\log_{2}c)$个等差序列(由于复杂度限制,这个栈需要通过若干个等差数列来描述)

(另外这样的过程并不容易维护$times$,但可以通过$Y_{x}$来找到最小的$x$,即$x\equiv -\frac{Y_{x}}{D}(mod\ c)$)

有两个结论:1.对于一个等差数列,由$Y_{x}$所构造出来的$x$也是等差数列;2.$x$和$Y_{x}$的等差数列公差严格单调递增(注意$Y_{x}$为负数)

由这些结论,当我们必然存在一组最优解使得取得所有组都在同一个等差数列中

反证法,假设取了第$i$个等差数列中第$i'$项和第$j$个等差数列中第$j'$项的组合(其中$i<j$),由于$i$的末尾=$i+1$的开头($j$的开头=$j-1$的末尾),强制$i'$($j'$)不能为等差数列中最后一项(第一项)

此时,不妨令$i'$取该等差数列的后一项,$j'$取该等差数列中前一项,分别对$x$和$y$分析:记$i$和$j$两个等差数列中$x$的公差分别为$d_{i}$和$d_{j}$,相比较而言$\Delta x=d_{i}-d_{j}<0$,因此更优($y$同理)

对于一个等差数列中,可以二分枚举答案,先取等差数列中第一个,之后调整一定是$x+=d_{x}$且$y-=d_{y}$(这里的$x$和$y$只所需的数量,不是限制),最多调整$ans\cdot (len-1)$($len$为等差数列长度),简单判定即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t,a,x,b,y,c,d,s,D,inv_D,ans;
5 int gcd(int x,int y){
6 if (!y)return x;
7 return gcd(y,x%y);
8 }
9 int exgcd(int a,int b,int &x,int &y){
10 if (!b){
11 x=1;
12 y=0;
13 return a;
14 }
15 int d=exgcd(b,a%b,y,x);
16 y-=(a/b)*x;
17 return d;
18 }
19 int inv(int k,int p){
20 int x,y;
21 exgcd(k,p,x,y);
22 return (x%p+p)%p;
23 }
24 ll div1(ll x,int y){
25 //t*y>=x
26 if (x<=0)return 0;
27 return (x+y-1)/y;
28 }
29 ll div2(ll x,int y){
30 if (x<0)return -1;
31 return x/y;
32 }
33 int query(int ay,int dy,int cnt){
34 int ax=c-1LL*ay*inv_D%c;
35 if (ay)ax%=c;
36 int dx=1LL*dy*inv_D%c;
37 int l=0,r=x+y;
38 while (l<r){
39 int mid=(l+r+1>>1);
40 //存在t使得ax*mid+t*dx<=x,ay*mid-t*dy<=y,0<=t<=cnt*mid
41 if (div1(1LL*ay*mid-y,dy)<=min(div2(x-1LL*ax*mid,dx),1LL*cnt*mid))l=mid;
42 else r=mid-1;
43 }
44 return l;
45 }
46 int main(){
47 scanf("%d",&t);
48 while (t--){
49 scanf("%d%d%d%d%d",&a,&x,&b,&y,&c);
50 d=gcd(a,b);
51 c/=gcd(c,d),a/=d,b/=d;
52 d=gcd(a,c);
53 y/=d,a/=d,c/=d;
54 d=gcd(b,c);
55 x/=d,b/=d,c/=d;
56 if (c==1){
57 printf("%d\n",x+y);
58 continue;
59 }
60 D=1LL*a*inv(b,c)%c;
61 inv_D=inv(D,c);
62 int cc=c,dd=D;
63 ans=0;
64 while (cc){
65 if (cc<dd)dd=(dd-1)%cc+1;
66 else{
67 int t=cc/dd;
68 ans=max(ans,query(cc,dd,t));
69 cc-=t*dd;
70 }
71 }
72 printf("%d\n",ans);
73 }
74 }

[atAGC045F]Division into Multiples的更多相关文章

  1. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  2. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  3. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  4. Multiples of 3 and 5

    #include<stdio.h> int main(void){ int n1, n2,n3; n1=333*(3+999)/2; n2=199*(5+995)/2; n3=66*(15 ...

  5. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  6. 【算法题】Multiples of 3 and 5

    Multiples of 3 and 5 原题 题意如下: 找出N以内的3和5的倍数的和. 思路 1.刚看到觉得好弱智,直接遍历一遍不就OK了吗?但是第2和第3个测试用例报了TLE,超时. 2.然后想 ...

  7. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  8. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  9. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. springcloud组件之hystrix服务熔断,降级,限流

    hystrix 简介 Hystrix是什么 在分布式环境中,许多服务依赖项中的一些必然会失败.Hystrix是一个库,通过添加延迟容忍和容错逻辑,帮助你控制这些分布式服务之间的交互.Hystrix通过 ...

  2. 从零入门 Serverless | Knative 带来的极致 Serverless 体验

    作者 | 冬岛 阿里巴巴高级技术专家 Serverless 公众号后台回复"knative",即可免费下载<Knative 云原生应用开发指南>电子书! 导读:Serv ...

  3. 题解 2020.10.24 考试 T2 选数

    题目传送门 题目大意 见题面. 思路 本来以为zcx.pxj变强了,后来发现是SPJ出问题了...考试的时候感觉有点人均啊...结果自己还是只想出来一半. 我们假设 \(f(x)=(\lfloor\f ...

  4. 洛谷3348 大森林 (LCT + 虚点 + 树上差分)

    这可真是道神仙题QWQ问了好多\(dalao\)才稍微明白了一丢丢做法 首先,我们假设不存在\(1\)操作,那么对于询问的一段区间中的所有的树,他们的形态应该是一样的 甚至可以直接理解为\(0\)操作 ...

  5. 3 Implementation: The Big Picture 实现:蓝图

    三.Implementation: The Big Picture 实现:蓝图 3.1 Layering of a .NET Solution .Net解决方案的分层 The picture belo ...

  6. 错误 Unresolved reference 'AF_INET' 解决办法

    错误代码如下: import socketserer_socket = socket.socket(AF_INET, SOCK_DGAM) 错误信息: 原因分析: 1.AF_INET,SOCK_DGA ...

  7. noj->电子老鼠走迷宫

    00 问题 描述: 有一只电子老鼠被困在如下图所示的迷宫中.这是一个12*12单元的正方形迷宫,黑色部分表示建筑物,白色部分是路.电子老鼠可以在路上向上.下.左.右行走,每一步走一个格子.现给定一个起 ...

  8. js--Symbol 符号基本数据类型

    前言 ECMAScript 6 中新增了 Symbol 符号这一基本数据类型,那么Symbol 是用来干什么的,对开发又有什么帮助呢?本文来总结记录一下 Symbol 的相关知识点. 正文 Symbo ...

  9. 修炼Servlet

    修炼Servlet 一.Servlet简单认识 1.Servlet是什么 Java Servlet 是运行在 Web 服务器或应用服务器上的程序,它是作为来自 Web 浏览器或其他 HTTP 客户端的 ...

  10. Python网络爬虫实战入门

    一.网络爬虫 网络爬虫(又被称为网页蜘蛛,网络机器人),是一种按照一定的规则,自动地抓取万维网信息的程序. 爬虫的基本流程: 发起请求: 通过HTTP库向目标站点发起请求,也就是发送一个Request ...