暴力二分答案+网络流,点数为$o(nk)$,无法通过

考虑Hall定理,即有完美匹配当且仅当$\forall S\subseteq V_{left}$,令$S'=\{x|\exists y\in V_{left}且(x,y)\in E\}$,满足$|S|\le |S'|$

代入本题中,即$o(2^{n})$枚举工人,判断前$i$天内这些工人中有人存在的天数>=工人数的$k$倍

(虽然每一个工人被裂为了$k$个点,但由于中$k$个点的出边相同,选多个不会增大$|S'|$,必然全选)

考虑如何统计,先预处理出每一天存在的工人的二进制,再将所有于其有交的二进制全部加1即可

反过来,就是所有与其无交点的二进制,即全部属于其补集的二进制,高位前缀和即可

还有二分上限的问题,可以证明是$2kn$的,这样可以保证每一个工人都出现了至少$kn$次,任取$k$次即可

考虑时间复杂度,总复杂度为$o(n^{2}k+(n2^{n}+nk)\log_{2}nk)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 3600005
4 int n,m,x,day[N],tot[N],f[N];
5 bool pd(int k){
6 for(int i=0;i<(1<<n);i++)f[i]=0;
7 for(int i=1;i<=k;i++)f[day[i]]++;
8 for(int i=0;i<n;i++)
9 for(int j=0;j<(1<<n);j++)
10 if (j&(1<<i))f[j]+=f[j^(1<<i)];
11 for(int i=0;i<(1<<n);i++)
12 if (tot[i]*m>k-f[(1<<n)-1-i])return 0;
13 return 1;
14 }
15 int main(){
16 scanf("%d%d",&n,&m);
17 for(int i=0;i<n;i++){
18 scanf("%d",&x);
19 for(int j=1;j<N-4;j++)
20 if ((j-1)/x%2==0)day[j]|=(1<<i);
21 }
22 for(int i=0;i<(1<<n);i++)tot[i]=tot[i>>1]+(i&1);
23 int l=1,r=N-5;
24 while (l<r){
25 int mid=(l+r>>1);
26 if (pd(mid))r=mid;
27 else l=mid+1;
28 }
29 printf("%d",l);
30 }

[atAGC106E]Medals的更多相关文章

  1. 构建通用的 React 和 Node 应用

    这是一篇非常优秀的 React 教程,这篇文章对 React 组件.React Router 以及 Node 做了很好的梳理.我是 9 月份读的该文章,当时跟着教程做了一遍,收获很大.但是由于时间原因 ...

  2. go语言赋值

    使用赋值语句可以更新一个变量的值,最简单的赋值语句是将要被赋值的变量放在=的左边,新值的表达式放在=的右边. x = // 命名变量的赋值 *p = true // 通过指针间接赋值 person.n ...

  3. [教程]phpwind9.0应用开发基础教程

    这篇文章着重于介绍在9.0中如何开发一个插件应用的示例,step by step来了解下在9.0中一个基础的应用包是如何开发的.1.目录结构OK,首先是目录结构,下面是一个应用我们推荐的目录. 应用包 ...

  4. XIV Open Cup named after E.V. Pankratiev. GP of SPb

    A. Bracket Expression 直接按题意模拟即可. 时间复杂度$O(n)$. #include<stdio.h> #include<algorithm> #inc ...

  5. 浅谈数位DP

    在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...

  6. "Accepted today?"[HDU1177]

    "Accepted today?" Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  7. discuz学习,文件列表

    文件颜色说明: 红色:程序核心文件,修改这类文件时千万要注意安全! 橙色:做插件几乎不会用到的文件,大概了解功能就可以了,其实我也不推荐修改这些文件 绿色:函数类文件,许多功能强大的自定义函数可以调用 ...

  8. Top 10 Universities for Artificial Intelligence

    1. Massachusetts Institute of Technology, Cambridge, MA Massachusetts Institute of Technology is a p ...

  9. CF Gym 100685A Ariel

    传送门 A. Ariel time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. iframe、SameSite与CEF

    iframe.SameSite与CEF 背景 本人使用CEF(或是Chrome)来加载开发的前端页面,其中使用iframe嵌入了第三方页面,在第三方页面中需要发送cookie到后端,然而加载会报错,第 ...

  2. React实现组件全屏化

    介绍 本文基于React+antd,给大家演示一个完整的全屏demo. 起因是开发今天给我提了一个sql编辑器输入框比较小,不支持放大,不太方便.希望能够全屏显示,联想到自己以后可能也会需要,便研究并 ...

  3. 题解 Math teacher's homework

    题目传送门 题目大意 给出 \(n,k\) 以及 \(a_{1,2,...,n}\) ,求有多少个 \(m_{1,2,...,n}\) 满足 \(\forall i,m_i\le a_i\) 且 \( ...

  4. FastAPI 学习之路(十二)接口几个额外信息和额外数据类型

    系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...

  5. scrapy爬虫简单项目入门练习

    [写在开头] scrapy环境配置配置好了之后,开始着手简单项目入门练习.关于环境配置见上一篇博客https://www.cnblogs.com/ljxh/p/11235079.html. [正文部分 ...

  6. 【实验向】问题:假设计算机A和计算机B通信,计算机A给计算机B发送一串16个字节的二进制字节串,以数组形式表示:

    问题: 假设计算机A和计算机B通信,计算机A给计算机B发送一串16个字节的二进制字节串,以数组形式表示: unsigned char[16] = {0x3f, 0xa0, 0x00, 0x00, 0x ...

  7. 【UE4 C++】获取运行时间、设置时间流速、暂停游戏

    基于UGameplayStatics 获取运行时间 /** Returns the frame delta time in seconds, adjusted by time dilation. */ ...

  8. Matlab/Modelsim图像联合仿真平台

    FPGA图像仿真平台 1 引言 在使用modelsim进行图像算法的功能仿真时,无法得到图像的实时预览,因此直观性有所欠缺.因此可配合matlab使用,通过modelsim读出txt格式的图像,利用m ...

  9. Coursera Deep Learning笔记 结构化机器学习项目 (上)

    参考:https://blog.csdn.net/red_stone1/article/details/78519599 1. 正交化(Orthogonalization) 机器学习中有许多参数.超参 ...

  10. mil,mm与inch之间的转换

    inch:英寸 mil:密耳 mm:毫米 cm:厘米 1mil=0.0254mm=25.4um 1mm=39.37mil 1inch=1000mil=25.4mm=2.54cm(公分) /////// ...