暴力二分答案+网络流,点数为$o(nk)$,无法通过

考虑Hall定理,即有完美匹配当且仅当$\forall S\subseteq V_{left}$,令$S'=\{x|\exists y\in V_{left}且(x,y)\in E\}$,满足$|S|\le |S'|$

代入本题中,即$o(2^{n})$枚举工人,判断前$i$天内这些工人中有人存在的天数>=工人数的$k$倍

(虽然每一个工人被裂为了$k$个点,但由于中$k$个点的出边相同,选多个不会增大$|S'|$,必然全选)

考虑如何统计,先预处理出每一天存在的工人的二进制,再将所有于其有交的二进制全部加1即可

反过来,就是所有与其无交点的二进制,即全部属于其补集的二进制,高位前缀和即可

还有二分上限的问题,可以证明是$2kn$的,这样可以保证每一个工人都出现了至少$kn$次,任取$k$次即可

考虑时间复杂度,总复杂度为$o(n^{2}k+(n2^{n}+nk)\log_{2}nk)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 3600005
4 int n,m,x,day[N],tot[N],f[N];
5 bool pd(int k){
6 for(int i=0;i<(1<<n);i++)f[i]=0;
7 for(int i=1;i<=k;i++)f[day[i]]++;
8 for(int i=0;i<n;i++)
9 for(int j=0;j<(1<<n);j++)
10 if (j&(1<<i))f[j]+=f[j^(1<<i)];
11 for(int i=0;i<(1<<n);i++)
12 if (tot[i]*m>k-f[(1<<n)-1-i])return 0;
13 return 1;
14 }
15 int main(){
16 scanf("%d%d",&n,&m);
17 for(int i=0;i<n;i++){
18 scanf("%d",&x);
19 for(int j=1;j<N-4;j++)
20 if ((j-1)/x%2==0)day[j]|=(1<<i);
21 }
22 for(int i=0;i<(1<<n);i++)tot[i]=tot[i>>1]+(i&1);
23 int l=1,r=N-5;
24 while (l<r){
25 int mid=(l+r>>1);
26 if (pd(mid))r=mid;
27 else l=mid+1;
28 }
29 printf("%d",l);
30 }

[atAGC106E]Medals的更多相关文章

  1. 构建通用的 React 和 Node 应用

    这是一篇非常优秀的 React 教程,这篇文章对 React 组件.React Router 以及 Node 做了很好的梳理.我是 9 月份读的该文章,当时跟着教程做了一遍,收获很大.但是由于时间原因 ...

  2. go语言赋值

    使用赋值语句可以更新一个变量的值,最简单的赋值语句是将要被赋值的变量放在=的左边,新值的表达式放在=的右边. x = // 命名变量的赋值 *p = true // 通过指针间接赋值 person.n ...

  3. [教程]phpwind9.0应用开发基础教程

    这篇文章着重于介绍在9.0中如何开发一个插件应用的示例,step by step来了解下在9.0中一个基础的应用包是如何开发的.1.目录结构OK,首先是目录结构,下面是一个应用我们推荐的目录. 应用包 ...

  4. XIV Open Cup named after E.V. Pankratiev. GP of SPb

    A. Bracket Expression 直接按题意模拟即可. 时间复杂度$O(n)$. #include<stdio.h> #include<algorithm> #inc ...

  5. 浅谈数位DP

    在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...

  6. "Accepted today?"[HDU1177]

    "Accepted today?" Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  7. discuz学习,文件列表

    文件颜色说明: 红色:程序核心文件,修改这类文件时千万要注意安全! 橙色:做插件几乎不会用到的文件,大概了解功能就可以了,其实我也不推荐修改这些文件 绿色:函数类文件,许多功能强大的自定义函数可以调用 ...

  8. Top 10 Universities for Artificial Intelligence

    1. Massachusetts Institute of Technology, Cambridge, MA Massachusetts Institute of Technology is a p ...

  9. CF Gym 100685A Ariel

    传送门 A. Ariel time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. 如何用redis统计海量UV?

    前言 我们先思考一个常见的业务问题:如果你负责开发维护一个大型的网站,有一天老板找产品经理要网站每个网页每天的 UV 数据,然后让你来开发这个统计模块,你会如何实现? 统计uv的常用方法以及优缺点 其 ...

  2. RabbitMQ的web页面介绍(三)

    一.Virtual Hosts 每一个 RabbitMQ 服务器都能创建虚拟的消息服务器,我们称之为虚拟主机 (virtual host) ,简称为vhost.每一个 vhost 本质上是一个独立的小 ...

  3. GDP区域分布图的生成与对比(ArcPy实现)

    一.背景 各地区经济协调发展是保证国民经济健康持续稳定增长的关键.GDP是反映各地区经济发展状况的重要指标.科学准确分析各地区GDP空间分布特征,对制定有效措施,指导经济协调发展具有重要参考价值. 二 ...

  4. DL4J实战之四:经典卷积实例(GPU版本)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. NOIP 模拟 七十七

    100+60+95+30; T4 一个变量打错挂了40.. T1 最大或 考虑从高到低枚举的二进制位,然后和的对应二进制位进行比较.如果两 者相同,那么不论怎么选择,,答案在这个位置上的值一定和在这个 ...

  6. 【NOIP1998】 三连击 题解

    文章转载前需和原作者联系,否则追究法律责任 题目链接:https://www.luogu.com.cn/problem/P1008 首先我们来分析一下题目.要求是枚举三个数,比例为1:2:3,且各个数 ...

  7. MeteoInfo-Java解析与绘图教程(五)

    MeteoInfo-Java解析与绘图教程(五) 最近太忙了,终于有时间继续写了,上文说到了基本上的绘图方法,但缺少色阶呈现,一般图叠加着地图上,后端不需要管色阶,但也要注意web页面色阶和我们的生成 ...

  8. Java:死锁编码及定位分析

    Java:死锁编码及定位分析 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 概念 死锁是指两个或多个以上的进程在执行过程中,因争夺资源而造成一种互相等待的现象, ...

  9. 混合开发框架Flutter

    Flutter开发简介与其他的混合开发的对比 为什么要使用Flutter? 跨平台技术简介 Hybrid技术简介 QT简介 Flutter简介 为什么要使用Flutter? Flutter有什么优势? ...

  10. Kubernetes集群环境搭建全过程

    资源准备以及服务器初始化 所有服务器执行一下脚本进行配置信息初始化: #!/bin/bash cd `dirname $0` # 关闭selinux setenforce 0 sed -i '/SEL ...