大家好,我是冰河~~

本文有点长,但是满满的干货,以实际案例的形式分析了两种异步模型,并从源码角度深度解析Future接口和FutureTask类,希望大家踏下心来,打开你的IDE,跟着文章看源码,相信你一定收获不小!

一、两种异步模型

在Java的并发编程中,大体上会分为两种异步编程模型,一类是直接以异步的形式来并行运行其他的任务,不需要返回任务的结果数据。一类是以异步的形式运行其他任务,需要返回结果。

1.无返回结果的异步模型

无返回结果的异步任务,可以直接将任务丢进线程或线程池中运行,此时,无法直接获得任务的执行结果数据,一种方式是可以使用回调方法来获取任务的运行结果。

具体的方案是:定义一个回调接口,并在接口中定义接收任务结果数据的方法,具体逻辑在回调接口的实现类中完成。将回调接口与任务参数一同放进线程或线程池中运行,任务运行后调用接口方法,执行回调接口实现类中的逻辑来处理结果数据。这里,给出一个简单的示例供参考。

  • 定义回调接口
package io.binghe.concurrent.lab04;

/**
* @author binghe
* @version 1.0.0
* @description 定义回调接口
*/
public interface TaskCallable<T> {
T callable(T t);
}

便于接口的通用型,这里为回调接口定义了泛型。

  • 定义任务结果数据的封装类
package io.binghe.concurrent.lab04;

import java.io.Serializable;

/**
* @author binghe
* @version 1.0.0
* @description 任务执行结果
*/
public class TaskResult implements Serializable {
private static final long serialVersionUID = 8678277072402730062L;
/**
* 任务状态
*/
private Integer taskStatus; /**
* 任务消息
*/
private String taskMessage; /**
* 任务结果数据
*/
private String taskResult; //省略getter和setter方法
@Override
public String toString() {
return "TaskResult{" +
"taskStatus=" + taskStatus +
", taskMessage='" + taskMessage + '\'' +
", taskResult='" + taskResult + '\'' +
'}';
}
}
  • 创建回调接口的实现类

回调接口的实现类主要用来对任务的返回结果进行相应的业务处理,这里,为了方便演示,只是将结果数据返回。大家需要根据具体的业务场景来做相应的分析和处理。

package io.binghe.concurrent.lab04;

/**
* @author binghe
* @version 1.0.0
* @description 回调函数的实现类
*/
public class TaskHandler implements TaskCallable<TaskResult> {
@Override
public TaskResult callable(TaskResult taskResult) {
//TODO 拿到结果数据后进一步处理
System.out.println(taskResult.toString());
return taskResult;
}
}
  • 创建任务的执行类

任务的执行类是具体执行任务的类,实现Runnable接口,在此类中定义一个回调接口类型的成员变量和一个String类型的任务参数(模拟任务的参数),并在构造方法中注入回调接口和任务参数。在run方法中执行任务,任务完成后将任务的结果数据封装成TaskResult对象,调用回调接口的方法将TaskResult对象传递到回调方法中。

package io.binghe.concurrent.lab04;

/**
* @author binghe
* @version 1.0.0
* @description 任务执行类
*/
public class TaskExecutor implements Runnable{
private TaskCallable<TaskResult> taskCallable;
private String taskParameter; public TaskExecutor(TaskCallable<TaskResult> taskCallable, String taskParameter){
this.taskCallable = taskCallable;
this.taskParameter = taskParameter;
} @Override
public void run() {
//TODO 一系列业务逻辑,将结果数据封装成TaskResult对象并返回
TaskResult result = new TaskResult();
result.setTaskStatus(1);
result.setTaskMessage(this.taskParameter);
result.setTaskResult("异步回调成功");
taskCallable.callable(result);
}
}

到这里,整个大的框架算是完成了,接下来,就是测试看能否获取到异步任务的结果了。

  • 异步任务测试类
package io.binghe.concurrent.lab04;

/**
* @author binghe
* @version 1.0.0
* @description 测试回调
*/
public class TaskCallableTest {
public static void main(String[] args){
TaskCallable<TaskResult> taskCallable = new TaskHandler();
TaskExecutor taskExecutor = new TaskExecutor(taskCallable, "测试回调任务");
new Thread(taskExecutor).start();
}
}

在测试类中,使用Thread类创建一个新的线程,并启动线程运行任务。运行程序最终的接口数据如下所示。

TaskResult{taskStatus=1, taskMessage='测试回调任务', taskResult='异步回调成功'}

大家可以细细品味下这种获取异步结果的方式。这里,只是简单的使用了Thread类来创建并启动线程,也可以使用线程池的方式实现。大家可自行实现以线程池的方式通过回调接口获取异步结果。

2.有返回结果的异步模型

尽管使用回调接口能够获取异步任务的结果,但是这种方式使用起来略显复杂。在JDK中提供了可以直接返回异步结果的处理方案。最常用的就是使用Future接口或者其实现类FutureTask来接收任务的返回结果。

  • 使用Future接口获取异步结果

使用Future接口往往配合线程池来获取异步执行结果,如下所示。

package io.binghe.concurrent.lab04;

import java.util.concurrent.*;

/**
* @author binghe
* @version 1.0.0
* @description 测试Future获取异步结果
*/
public class FutureTest { public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(new Callable<String>() {
@Override
public String call() throws Exception {
return "测试Future获取异步结果";
}
});
System.out.println(future.get());
executorService.shutdown();
}
}

运行结果如下所示。

测试Future获取异步结果
  • 使用FutureTask类获取异步结果

FutureTask类既可以结合Thread类使用也可以结合线程池使用,接下来,就看下这两种使用方式。

结合Thread类的使用示例如下所示。

package io.binghe.concurrent.lab04;

import java.util.concurrent.*;

/**
* @author binghe
* @version 1.0.0
* @description 测试FutureTask获取异步结果
*/
public class FutureTaskTest { public static void main(String[] args)throws ExecutionException, InterruptedException{
FutureTask<String> futureTask = new FutureTask<>(new Callable<String>() {
@Override
public String call() throws Exception {
return "测试FutureTask获取异步结果";
}
});
new Thread(futureTask).start();
System.out.println(futureTask.get());
}
}

运行结果如下所示。

测试FutureTask获取异步结果

结合线程池的使用示例如下。

package io.binghe.concurrent.lab04;

import java.util.concurrent.*;

/**
* @author binghe
* @version 1.0.0
* @description 测试FutureTask获取异步结果
*/
public class FutureTaskTest { public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService executorService = Executors.newSingleThreadExecutor();
FutureTask<String> futureTask = new FutureTask<>(new Callable<String>() {
@Override
public String call() throws Exception {
return "测试FutureTask获取异步结果";
}
});
executorService.execute(futureTask);
System.out.println(futureTask.get());
executorService.shutdown();
}
}

运行结果如下所示。

测试FutureTask获取异步结果

可以看到使用Future接口或者FutureTask类来获取异步结果比使用回调接口获取异步结果简单多了。注意:实现异步的方式很多,这里只是用多线程举例。

接下来,就深入分析下Future接口。

二、深度解析Future接口

1.Future接口

Future是JDK1.5新增的异步编程接口,其源代码如下所示。

package java.util.concurrent;

public interface Future<V> {

    boolean cancel(boolean mayInterruptIfRunning);

    boolean isCancelled();

    boolean isDone();

    V get() throws InterruptedException, ExecutionException;

    V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}

可以看到,在Future接口中,总共定义了5个抽象方法。接下来,就分别介绍下这5个方法的含义。

  • cancel(boolean)

取消任务的执行,接收一个boolean类型的参数,成功取消任务,则返回true,否则返回false。当任务已经完成,已经结束或者因其他原因不能取消时,方法会返回false,表示任务取消失败。当任务未启动调用了此方法,并且结果返回true(取消成功),则当前任务不再运行。如果任务已经启动,会根据当前传递的boolean类型的参数来决定是否中断当前运行的线程来取消当前运行的任务。

  • isCancelled()

判断任务在完成之前是否被取消,如果在任务完成之前被取消,则返回true;否则,返回false。

这里需要注意一个细节:只有任务未启动,或者在完成之前被取消,才会返回true,表示任务已经被成功取消。其他情况都会返回false。

  • isDone()

判断任务是否已经完成,如果任务正常结束、抛出异常退出、被取消,都会返回true,表示任务已经完成。

  • get()

当任务完成时,直接返回任务的结果数据;当任务未完成时,等待任务完成并返回任务的结果数据。

  • get(long, TimeUnit)

当任务完成时,直接返回任务的结果数据;当任务未完成时,等待任务完成,并设置了超时等待时间。在超时时间内任务完成,则返回结果;否则,抛出TimeoutException异常。

2.RunnableFuture****接口

Future接口有一个重要的子接口,那就是RunnableFuture接口,RunnableFuture接口不但继承了Future接口,而且继承了java.lang.Runnable接口,其源代码如下所示。

package java.util.concurrent;

public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}

这里,问一下,RunnableFuture接口中有几个抽象方法?想好了再说!哈哈哈。。。

这个接口比较简单run()方法就是运行任务时调用的方法。

3.FutureTask类

FutureTask类是RunnableFuture接口的一个非常重要的实现类,它实现了RunnableFuture接口、Future接口和Runnable接口的所有方法。FutureTask类的源代码比较多,这个就不粘贴了,大家自行到java.util.concurrent下查看。

(1)FutureTask类中的变量与常量

在FutureTask类中首先定义了一个状态变量state,这个变量使用了volatile关键字修饰,这里,大家只需要知道volatile关键字通过内存屏障和禁止重排序优化来实现线程安全,后续会单独深度分析volatile关键字是如何保证线程安全的。紧接着,定义了几个任务运行时的状态常量,如下所示。

private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;

其中,代码注释中给出了几个可能的状态变更流程,如下所示。

NEW -> COMPLETING -> NORMAL
NEW -> COMPLETING -> EXCEPTIONAL
NEW -> CANCELLED
NEW -> INTERRUPTING -> INTERRUPTED

接下来,定义了其他几个成员变量,如下所示。

private Callable<V> callable;
private Object outcome;
private volatile Thread runner;
private volatile WaitNode waiters;

又看到我们所熟悉的Callable接口了,Callable接口那肯定就是用来调用call()方法执行具体任务了。

  • outcome:Object类型,表示通过get()方法获取到的结果数据或者异常信息。
  • runner:运行Callable的线程,运行期间会使用CAS保证线程安全,这里大家只需要知道CAS是Java保证线程安全的一种方式,后续文章中会深度分析CAS如何保证线程安全。
  • waiters:WaitNode类型的变量,表示等待线程的堆栈,在FutureTask的实现中,会通过CAS结合此堆栈交换任务的运行状态。

看一下WaitNode类的定义,如下所示。

static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
}

可以看到,WaitNode类是FutureTask类的静态内部类,类中定义了一个Thread成员变量和指向下一个WaitNode节点的引用。其中通过构造方法将thread变量设置为当前线程。

(2)构造方法

接下来,是FutureTask的两个构造方法,比较简单,如下所示。

public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
} public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}

(3)是否取消与完成方法

继续向下看源码,看到一个任务是否取消的方法,和一个任务是否完成的方法,如下所示。

public boolean isCancelled() {
return state >= CANCELLED;
} public boolean isDone() {
return state != NEW;
}

这两方法中,都是通过判断任务的状态来判定任务是否已取消和已完成的。为啥会这样判断呢?再次查看FutureTask类中定义的状态常量发现,其常量的定义是有规律的,并不是随意定义的。其中,大于或者等于CANCELLED的常量为CANCELLED、INTERRUPTING和INTERRUPTED,这三个状态均可以表示线程已经被取消。当状态不等于NEW时,可以表示任务已经完成。

通过这里,大家可以学到一点:以后在编码过程中,要按照规律来定义自己使用的状态,尤其是涉及到业务中有频繁的状态变更的操作,有规律的状态可使业务处理变得事半功倍,这也是通过看别人的源码设计能够学到的,这里,建议大家还是多看别人写的优秀的开源框架的源码。

(4)取消方法

我们继续向下看源码,接下来,看到的是cancel(boolean)方法,如下所示。

public boolean cancel(boolean mayInterruptIfRunning) {
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
} finally {
finishCompletion();
}
return true;
}

接下来,拆解cancel(boolean)方法。在cancel(boolean)方法中,首先判断任务的状态和CAS的操作结果,如果任务的状态不等于NEW或者CAS的操作返回false,则直接返回false,表示任务取消失败。如下所示。

if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;

接下来,在try代码块中,首先判断是否可以中断当前任务所在的线程来取消任务的运行。如果可以中断当前任务所在的线程,则以一个Thread临时变量来指向运行任务的线程,当指向的变量不为空时,调用线程对象的interrupt()方法来中断线程的运行,最后将线程标记为被中断的状态。如下所示。

try {
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
}

这里,发现变更任务状态使用的是UNSAFE.putOrderedInt()方法,这个方法是个什么鬼呢?点进去看一下,如下所示。

public native void putOrderedInt(Object var1, long var2, int var4);

可以看到,又是一个本地方法,嘿嘿,这里先不管它,后续文章会详解这些方法的作用。

接下来,cancel(boolean)方法会进入finally代码块,如下所示。

finally {
finishCompletion();
}

可以看到在finallly代码块中调用了finishCompletion()方法,顾名思义,finishCompletion()方法表示结束任务的运行,接下来看看它是如何实现的。点到finishCompletion()方法中看一下,如下所示。

private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}

在finishCompletion()方法中,首先定义一个for循环,循环终止因子为waiters为null,在循环中,判断CAS操作是否成功,如果成功进行if条件中的逻辑。首先,定义一个for自旋循环,在自旋循环体中,唤醒WaitNode堆栈中的线程,使其运行完成。当WaitNode堆栈中的线程运行完成后,通过break退出外层for循环。接下来调用done()方法。done()方法又是个什么鬼呢?点进去看一下,如下所示。

protected void done() { }

可以看到,done()方法是一个空的方法体,交由子类来实现具体的业务逻辑。

当我们的具体业务中,需要在取消任务时,执行一些额外的业务逻辑,可以在子类中覆写done()方法的实现。

(5)get()方法

继续向下看FutureTask类的代码,FutureTask类中实现了两个get()方法,如下所示。

public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
} public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
}

没参数的get()方法为当任务未运行完成时,会阻塞,直到返回任务结果。有参数的get()方法为当任务未运行完成,并且等待时间超出了超时时间,会TimeoutException异常。

两个get()方法的主要逻辑差不多,一个没有超时设置,一个有超时设置,这里说一下主要逻辑。判断任务的当前状态是否小于或者等于COMPLETING,也就是说,任务是NEW状态或者COMPLETING,调用awaitDone()方法,看下awaitDone()方法的实现,如下所示。

private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
} int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}

接下来,拆解awaitDone()方法。在awaitDone()方法中,最重要的就是for自旋循环,在循环中首先判断当前线程是否被中断,如果已经被中断,则调用removeWaiter()将当前线程从堆栈中移除,并且抛出InterruptedException异常,如下所示。

if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}

接下来,判断任务的当前状态是否完成,如果完成,并且堆栈句柄不为空,则将堆栈中的当前线程设置为空,返回当前任务的状态,如下所示。

int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}

当任务的状态为COMPLETING时,使当前线程让出CPU资源,如下所示。

else if (s == COMPLETING)
Thread.yield();

如果堆栈为空,则创建堆栈对象,如下所示。

else if (q == null)
q = new WaitNode();

如果queued变量为false,通过CAS操作为queued赋值,如果awaitDone()方法传递的timed参数为true,则计算超时时间,当时间已超时,则在堆栈中移除当前线程并返回任务状态,如下所示。如果未超时,则重置超时时间,如下所示。

else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}

如果不满足上述的所有条件,则将当前线程设置为等待状态,如下所示。

else
LockSupport.park(this);

接下来,回到get()方法中,当awaitDone()方法返回结果,或者任务的状态不满足条件时,都会调用report()方法,并将当前任务的状态传递到report()方法中,并返回结果,如下所示。

return report(s);

看来,这里还要看下report()方法啊,点进去看下report()方法的实现,如下所示。

private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}

可以看到,report()方法的实现比较简单,首先,将outcome数据赋值给x变量,接下来,主要是判断接收到的任务状态,如果状态为NORMAL,则将x强转为泛型类型返回;当任务的状态大于或者等于CANCELLED,也就是任务已经取消,则抛出CancellationException异常,其他情况则抛出ExecutionException异常。

至此,get()方法分析完成。注意:一定要理解get()方法的实现,因为get()方法是我们使用Future接口和FutureTask类时,使用的比较频繁的一个方法。

(6)set()方法与setException()方法

继续看FutureTask类的代码,接下来看到的是set()方法与setException()方法,如下所示。

protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
} protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}

通过源码可以看出,set()方法与setException()方法整体逻辑几乎一样,只是在设置任务状态时一个将状态设置为NORMAL,一个将状态设置为EXCEPTIONAL。

至于finishCompletion()方法,前面已经分析过。

(7)run()方法与runAndReset()方法

接下来,就是run()方法了,run()方法的源代码如下所示。

public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}

可以这么说,只要使用了Future和FutureTask,就必然会调用run()方法来运行任务,掌握run()方法的流程是非常有必要的。在run()方法中,如果当前状态不是NEW,或者CAS操作返回的结果为false,则直接返回,不再执行后续逻辑,如下所示。

if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread()))
return;

接下来,在try代码块中,将成员变量callable赋值给一个临时变量c,判断临时变量不等于null,并且任务状态为NEW,则调用Callable接口的call()方法,并接收结果数据。并将ran变量设置为true。当程序抛出异常时,将接收结果的变量设置为null,ran变量设置为false,并且调用setException()方法将任务的状态设置为EXCEPTIONA。接下来,如果ran变量为true,则调用set()方法,如下所示。

try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
}

接下来,程序会进入finally代码块中,如下所示。

finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}

这里,将runner设置为null,如果任务的当前状态大于或者等于INTERRUPTING,也就是线程被中断了。则调用handlePossibleCancellationInterrupt()方法,接下来,看下handlePossibleCancellationInterrupt()方法的实现。

private void handlePossibleCancellationInterrupt(int s) {
if (s == INTERRUPTING)
while (state == INTERRUPTING)
Thread.yield();
}

可以看到,handlePossibleCancellationInterrupt()方法的实现比较简单,当任务的状态为INTERRUPTING时,使用while()循环,条件为当前任务状态为INTERRUPTING,将当前线程占用的CPU资源释放,也就是说,当任务运行完成后,释放线程所占用的资源。

runAndReset()方法的逻辑与run()差不多,只是runAndReset()方法会在finally代码块中将任务状态重置为NEW。runAndReset()方法的源代码如下所示,就不重复说明了。

protected boolean runAndReset() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread()))
return false;
boolean ran = false;
int s = state;
try {
Callable<V> c = callable;
if (c != null && s == NEW) {
try {
c.call(); // don't set result
ran = true;
} catch (Throwable ex) {
setException(ex);
}
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
return ran && s == NEW;
}

(8)removeWaiter()方法

removeWaiter()方法中主要是使用自旋循环的方式来移除WaitNode中的线程,比较简单,如下所示。

private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
for (;;) { // restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null)
pred = q;
else if (pred != null) {
pred.next = s;
if (pred.thread == null) // check for race
continue retry;
}
else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
q, s))
continue retry;
}
break;
}
}
}

最后,在FutureTask类的最后,有如下代码。

// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long stateOffset;
private static final long runnerOffset;
private static final long waitersOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = FutureTask.class;
stateOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("state"));
runnerOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("runner"));
waitersOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("waiters"));
} catch (Exception e) {
throw new Error(e);
}
}

关于这些代码的作用,会在后续深度解析CAS文章中详细说明,这里就不再探讨。

至此,关于Future接口和FutureTask类的源码就分析完了。

好了,今天就到这儿吧,我是冰河,我们下期见~~

【高并发】两种异步模型与深度解析Future接口的更多相关文章

  1. 以两种异步模型应用案例,深度解析Future接口

    摘要:本文以实际案例的形式分析了两种异步模型,并从源码角度深度解析Future接口和FutureTask类. 本文分享自华为云社区<[精通高并发系列]两种异步模型与深度解析Future接口(一) ...

  2. css的两种盒子模型

    css的两种盒子模型:W3C标准盒子模型.IE盒子模型 两者的相同之处:都包含margin.border.padding.content 两者的不同之处:W3C标准盒子模型的content部分不包含其 ...

  3. JMS两种消息模型

    前段时间学习EJB.接触到了JMS(Java消息服务),JMS支持两种消息模型:Point-to-Point(P2P)和Publish/Subscribe(Pub/Sub),即点对点和公布订阅模型. ...

  4. axios 两种异步模式,代理模式 和 异步模式

    axios 两种异步模式,代理模式 和 异步模式

  5. DIV+CSS两种盒子模型(W3C盒子与IE盒子)

    在辨析两种盒子模型之前.先简单说明一下什么叫盒子模型. 原理: 先说说我们在网页设计中常听的属性名:内容(content).填充(padding).边框(border).边界(margin), CSS ...

  6. 两种Tensorflow模型保存的方法

    在Tensorflow中,有两种保存模型的方法:一种是Checkpoint,另一种是Protobuf,也就是PB格式: 一. Checkpoint方法: 1.保存时使用方法: tf.train.Sav ...

  7. Java NIO学习与记录(八): Reactor两种多线程模型的实现

    Reactor两种多线程模型的实现 注:本篇文章例子基于上一篇进行:Java NIO学习与记录(七): Reactor单线程模型的实现 紧接着上篇Reactor单线程模型的例子来,假设Handler的 ...

  8. CSS的两种盒模型

    盒模型一共有两种模式,一种是标准模式,另一种就是怪异模式. 当你用编辑器新建一个html页面的时候你一定会发现最顶上都会有一个DOCTYPE标签,例如: <!DOCTYPE HTML PUBLI ...

  9. AsyncTask和Handler两种异步方式的实现和区别比较

    1  AsyncTask实现的原理,和适用的优缺点 AsyncTask,是android提供的轻量级的异步类,可以直接继承AsyncTask,在类中实现异步操作,并提供接口反馈当前异步执行的程度(可以 ...

随机推荐

  1. 李宏毅强化学习完整笔记!开源项目《LeeDeepRL-Notes》发布

    Datawhale开源 核心贡献者:王琦.杨逸远.江季 提起李宏毅老师,熟悉强化学习的读者朋友一定不会陌生.很多人选择的强化学习入门学习材料都是李宏毅老师的台大公开课视频. 现在,强化学习爱好者有更完 ...

  2. elasticsearch查询之大数据集分页查询

    一. 要解决的问题 search命中的记录特别多,使用from+size分页,直接触发了elasticsearch的max_result_window的最大值: { "error" ...

  3. 从我做起[AutoMapper实现模块化注册自定义扩展MapTo<>()].Net Core 之二

    AutoMapper实现模块化注册自定义扩展MapTo<>() 我们都知道AutoMapper是使用的最多的实体模型映射,如果没有AutoMapper做对象映射那么我们需要想一下是怎么写的 ...

  4. 各种形式存放token

    1.可以将token存储在 localstorage里面,在一个统一的地方复写请求头,让每次请求都在header中带上这个token, 当token失效的时候,后端肯定会返回401,这个时候在你可以在 ...

  5. DOM Document.readyState 属性

    感谢原文作者:MDN 原文地址:https://developer.mozilla.org/zh-CN/docs/Web/API/Document/readyState 描述 一个document 的 ...

  6. JVM学习七-(复习)垃圾收集策略与算法

    垃圾收集策略与算法 程序计数器.虚拟机栈.本地方法栈随线程而生,也随线程而灭:栈帧随着方法的开始而入栈,随着方法的结束而出栈.这几个区域的内存分配和回收都具有确定性,在这几个区域内不需要过多考虑回收的 ...

  7. Pandas中Series与Dataframe的初始化

    (一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...

  8. MySQL 快速入门(一)

    目录 MySQL快速入门 简介 存储数据的演变过程 数据库分类 概念介绍 MySQL安装 MySQL命令初始 环境变量配置 MySQL环境变量配置 修改配置文件 设置新密码 忘记密码的情况 基本sql ...

  9. 我来教你如何将cpu使用率up起来(shell脚本[含注释])

    这个脚本是为了逃过一些资源检测的,当一些机器当前使用率偏低,会被客户要求收回,那咋办呢?使用下面的脚本,就可以留住你的机器了 假设要求cpu使用率不能低于35% 使用方法:bash up_up_up. ...

  10. 我们一起来学Shell - 正则表达式

    文章目录 什么是正则表达式 正则表达式元字符 正则表达式应用举例 POSIX 方括号表达式 POSIX 字符集列表: 我们一起来学Shell - 初识shell 我们一起来学Shell - shell ...