正题

题目链接:https://www.luogu.com.cn/problem/P4201


题目大意

给出\(n\)个点的一棵树开始所有边都是白色,选出若干条没有公共点的路径将上面所有边变为黑色。

要求所有点到\(1\)号点的路径上经过的白色边的数量的最大值最小。

求最小值和方案数


解题思路

直接记录最小值的树形\(dp\)可以计算出第一个答案,但是第二个答案就有点麻烦了,因为有的不取最小值也不一定影响答案。

而可以发现如果按照树链剖分的思路来做答案是不会超过\(\log_2n\)的,进一步证明的话其实可以得到答案不会超过\(\log_3 n\)的结论,因为一个顶部节点实际上是可以延伸出\(2\)条路径的。

这样就可以直接\(dp\)了,设\(f_{i,j,0/1/2}\)表示到节点\(i\),最大值为\(j\),节点\(i\)已经往子树中延伸了\(0/1/2\)条路径时的方案数。

那么转移起来就很方便了,需要注意答案可能是模数的倍数,所以我们需要另开一个变量来记录每种情况是否有可能。

时间复杂度\(O(n\log_3 n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10;
struct node{
ll to,next;
}a[N<<1];
ll n,m,P,tot,ls[N],f[N][12][3];
bool v[N][12][3];
void addl(ll x,ll y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dp(ll x,ll fa){
for(ll i=1;i<=11;i++)f[x][i][0]=v[x][i][0]=1;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(y==fa)continue;dp(y,x);
for(ll j=1;j<=11;j++){
ll cho=(f[y][j-1][0]+f[y][j-1][1]+f[y][j-1][2])%P;
ll che=(f[y][j][0]+f[y][j][1])%P;
ll chv=v[y][j-1][0]|v[y][j-1][1]|v[y][j-1][2];
ll chn=v[y][j][0]|v[y][j][1];
(f[x][j][2]=f[x][j][1]*che+f[x][j][2]*cho)%=P;
(f[x][j][1]=f[x][j][0]*che+f[x][j][1]*cho)%=P;
(f[x][j][0]*=cho)%=P;
v[x][j][2]=v[x][j][1]&chn|v[x][j][2]&chv;
v[x][j][1]=v[x][j][0]&chn|v[x][j][0]&chv;
v[x][j][0]&=chv;
}
}
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&P);
if(m!=n-1)return printf("-1\n-1")&0;
for(ll i=1;i<=m;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
addl(x,y);addl(y,x);
}
dp(1,1);
for(ll i=1;i<=11;i++){
ll p=v[1][i][0]|v[1][i][1]|v[1][i][2];
if(!p)continue;
printf("%lld\n%lld",i-1,(f[1][i][0]+f[1][i][1]+f[1][i][2])%P);
break;
}
return 0;
}

P4201-[NOI2008]设计路线【结论,树形dp】的更多相关文章

  1. 题解P4201: [NOI2008]设计路线

    发现给出了一棵树, 不是树的情况直接输出-1 考虑进行DP, 设f[i][0/1/2]为i的子树中选小于等于0/1/2条边修路的方案数, 不妨对于一个节点, 先考虑正好相等的情况, 假设当前扫到了一个 ...

  2. [luogu4201][bzoj1063]设计路线【树形DP】

    题目描述 Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段.Z国共有n座城市,一些城市之间由双向的公路所连接.非常神奇的是Z国的每个城市所处的经度都不相同,并且最多只和一 ...

  3. [NOI2008]设计路线

    题目 洛谷 BZOJ 做法 神仙题 显然这是棵树 个节点相东仅连接一个结点 不同于剖分,还能存在\("V"\)字型,一个节点最多与另外节点连两条边 \(dp[i][j][k]\)表 ...

  4. 洛谷 P4201 设计路线 [NOI2008] 树形dp

    正解:树形dp 解题报告: 大概是第一道NOI的题目?有点激动嘻嘻 然后先放个传送门 先大概港下这题的题意是啥qwq 大概就是给一棵树,然后可以选若干条链把链上的所有边的边权变成0,但是这些链不能有交 ...

  5. HDU 4514 - 湫湫系列故事——设计风景线 - [并查集判无向图环][树形DP求树的直径]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...

  6. HDU 4514 湫湫系列故事——设计风景线(并查集+树形DP)

    湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

  7. 1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)

    根据最近做的几道树形dp题总结一下规律.(从这篇往前到洛谷 P1352 ) 这几道题都是在一颗树上,然后要让整棵树的节点或边 满足一种状态.然后点可以影响到相邻点的这种状态 然后求最小次数 那么要从两 ...

  8. [SinGuLaRiTy] 树形DP专项测试

    [SinGuLaRiTy-1015] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 对于所有的题目:Time Limit:1s  |  Me ...

  9. hdu 4514 并查集+树形dp

    湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

随机推荐

  1. @Transactional-同一个类中方法自调,调用方法事物失效

    问题分析 一个类中的方法调用另一个事物传播性为创建事物的方法,调用的方法事物失效? SpringAOP 代理的Service对象调用了其方法,这个方法再去调用这个Service中的其他方法是没有使用A ...

  2. C#基础知识---匿名方法使用

    一.匿名方法使用 1 using System; 2 using System.Collections.Generic; 3 using System.Linq; 4 using System.Tex ...

  3. 使用git下载码云仓库文件步骤总结

    从码云下载文件的两种方式(私服时) 1.让私服管理者复制链接,然后你加入私服: 2.生成公钥,让私服管理者添加你的公钥. 在eclipse中找到git,输入自己的登录账号和密码,下载文件到本地仓库,然 ...

  4. WPF---数据绑定之ItemsControl(三)

    一.Combox绑定 场景:定义多个Person,Person有Name和Age属性,将多个Person与Combox进行绑定,Combox中只显示Name信息,点击任意一个item,在左侧显示该条目 ...

  5. uwp 的个人名片

    xml code ---------------------------------------------------------------------- <Page x:Class=&qu ...

  6. Dynamics CRM实体系列之1:N、N:1以及N:N关系

    Dynamics CRM在实施过程中会遇到很多多个实体关联的问题,这样可以实现多个实体的记录通过关联的字段实现数据的综合展示,在Sql Server里面叫做外键,在Dynamics CRM叫做关系.D ...

  7. vue@cli3 项目模板怎么使用public目录下的静态文件,找了好久都不对,郁闷!

    作为图片最好放在static目录下,但是vue@cli3没有static,网上都说放在public目录下,行,那就放吧,可问题是图片放了怎么使用 第一次尝试 肯定用绝对路径这就不说了,用相对路径,we ...

  8. centos7 Tomcat 停止服务时报错: java.net.ConnectException: 拒绝连接 (Connection refused)

    2021-08-02 1.问题描述 配置完 server.xml 文件后,执行 shutdown.sh 脚本停止服务,出现以下错误 2. 解决方法 查看当前正在运行的 Java 进程号 # 找到 Ja ...

  9. Python - 面向对象编程 - 多继承

    继承的详解 https://www.cnblogs.com/poloyy/p/15216652.html 这篇文章讲的都是单继承,Python 中还有多继承 Python 多继承的背景 大部分面向对象 ...

  10. Kubernetes 组件简介

    关于Kubernetes是什么??? Kubernetes是致力于提供跨主机集群的自动部署.扩展.高可用以及运行应用程序容器的平台. Kubernets集群组成有哪些??? k8s由master和no ...