最近一直在进行Doris的向量化计算引擎的开发工作,在进行CPU热点排查时,发现了存储层上出现的CPU热点问题。于是尝试通过SIMD的指令优化了这部分的CPU热点代码,取得了较好的性能优化效果。借用本篇手记记录下问题的发现,解决过程一些对于C/C++程序性能问题的一些解决思路,希望各位也能有所收获。

1.热点代码的发现

最近在进行Doris的部分查询调优工作,通过perf定位CPU执行热点时,发现了以下的热点部分:

这里通过perf可以看到,将近一半的CPU耗时损耗在BinaryDictPageDecoder::next_batchBinaryPlainPageDecoder::next_batch这两个函数上。这两部分都是字符串列进行数据读取的解码部分,所以我们得研读一下这部分代码,来看看是否有可能得优化空间。

通过Perf进一步进入函数之中,看看哪部分占用了大量的CPU。由上图可以看到大量的CPU耗时都在解码时的内存分配之上了。尤其是int64_t RoundUpToPowerOf2这个函数的计算,这个函数是为了计算内存分配时按照对齐的内存分配的逻辑。

哪儿来的内存分配

这里得先了解Doris在Page级别是如何存储字符串类型的。这里有两种Page:

  • DictPage

    字典编码,适合在字符串重复度较高的数据存储。Doris会将字典写入PlainPage之中,并记录每一个字符串的偏移量。而实际数据Page之中存储的不是原始的字符串了,而是偏移量了。而实际解码的时候,则需要分配内存,并从字典之中将对应偏移量的内存拷贝出来。这就是上面代码热点产生的地方。

  • PlainPage

    直接编码,适合在字符串重复度不高时。Doris会自动将DictPage转为PlainPage。而实际解码的时候,则需要分配内存,并将PlainPage的内容拷贝出来。这也是上面代码热点产生的地方。

无论是DictPage与PlainPage,解码流程都是这样。Doris每次读取的数据量是1024行,所以每次的操作都是

  • 取出一行数据
  • 通过数据长度,计算分配对齐内存长度
  • 分配对应的内存
  • 拷贝数据到分配的内存中

2.使用SIMD指令解决问题

好的,确认了问题,就开始研究解决方案。从直觉上说,将1024次零散的内存分配简化为一次大内存分配,肯定有较好的性能提升。

但是这样会导致一个很致命的问题:批量的内存分配无法保证内存的对齐,这会导致后续的访存的指令性能低下。但是为了保证内存的对齐,上面提到的尤其是int64_t RoundUpToPowerOf2这个函数的计算是无法绕过的问题。

那既然无法绕过,我们就得想办法优化它了。这个计算是一个很简单的函数计算,所以笔者尝试是否能用SIMD指令优化这个计算流程。

2.1 什么是SIMD指令

SIMD是(Single instruction multiple data)的缩写,代表了通过单一一条指令就可以操作一批数据。通过这种方式,在相同的时钟周期内,CPU能够处理的数据的能力就大大增加了。

上图是一个简单的乘法计算,我们可以看到:4个数字都需要进行乘3的计算。这需要执行

  • 4个load内存指令
  • 4个乘法指令
  • 4个内存回写指令

而通过SIMD指令则可以按批的方式来更快的处理数据,由上图可以看到。原先的12个指令,减少到了3个指令。当代的X86处理器通常都支持了MMX,SSE,AVX等SIMD指令,通过这样的方式来加快了CPU的计算。

当然SIMD指令也是有一定代价的,从上面的图中也能看出端倪。

  • 处理的数据需要连续,并且对齐的内存能获得更好的性能
  • 寄存器的占用比传统的SISD的CPU多

更多关于SIMD指令相关的信息可以参照笔者在文末留下的参考资料。

2.2 如何生成SIMD指令

通常生成SIMD指令的方式通常有两种:

Auto Vectorized

自动向量化,也就是编译器自动去分析for循环是否能够向量化。如果可以的话,便自动生成向量化的代码,通常我们开始的-O3优化便会开启自动向量化。

这种方式当然是最简单的,但是编译器毕竟没有程序员那样智能,所以对于自动向量化的优化是相对苛刻的,所以需要程序员写出足够亲和度的代码。

下面是自动向量化的一些tips:

  • 1.简单的for循环
  • 2.足够简单的代码,避免:函数调用,分支跳动
  • 3.规避数据依赖,就是下一个计算结果依赖上一个循环的计算结果
  • 4.连续的内存与对齐的内存
手写SIMD指令

当然,本身SIMD也通过库的方式进行了支持。我们也可以直接通过Intel提供的库来直接进行向量化编程,比如SSE的API的头文件为xmmintrin.hAVX的API头文件为immintrin.h。这种实现方式最为高效,但是需要程序员熟悉SIMD的编码方式,并且并不通用。比如实现的AVX的向量化算法并不能在不支持AVX指令集的机器上运行,也无法用SSE指令集代替。

3.开发起来,解决问题

通过上一小节对SIMD指令的分析。接下来就是如何在Doris的代码上进行开发,并验证效果。

3.1 代码开发

思路是最难的,写代码永远是最简单的。直接上笔者修改Doris的代码吧:

    // use SIMD instruction to speed up call function `RoundUpToPowerOfTwo`
auto mem_size = 0;
for (int i = 0; i < len; ++i) {
mem_len[i] = BitUtil::RoundUpToPowerOf2Int32(mem_len[i], MemPool::DEFAULT_ALIGNMENT);
mem_size += mem_len[i];
}

这里利用了GCC的auto vectorized的能力,让上面的for循环能够进行向量化的计算。由于当前Doris默认的编译选项并不支持AVX指令集, 而原有的BitUtil::RoundUpToPowerOf2的函数入参为Int64,这让只有128位的SSE指令有些捉襟见肘,所以这里笔者实现了BitUtil::RoundUpToPowerOf2Int32的版本来加快这个过程.

  // speed up function compute for SIMD
static inline size_t RoundUpToPowerOf2Int32(size_t value, size_t factor) {
DCHECK((factor > 0) && ((factor & (factor - 1)) == 0));
return (value + (factor - 1)) & ~(factor - 1);
}

如果是32位的计算,SSE指令支持128位的计算。也就是能够能够一次进行4个数字的操作。

完整的代码实现请参考这里的PR

3.2 性能验证

Coding完成之后,编译部署,进行测试。同样用Perf进行热点代码的观察,向量化之后,对应的代码的CPU占比显著下降,执行性能得到了提升。

no vectorized vectorized
DictPage 23.42% 14.82%
PlainPage 23.38% 11.93%

随后在单机SSB的模型上测试了一下效果,可以看到不少原先在存储层较慢的查询都得到了明显的加速效果。

接着就是老方式:提出issue,把解决问题的代码贡献给Doris的官方代码仓库。完结撒花

4.小结

Bingo! 到此为止,问题顺利解决,得到了一定的性能提升。

本文特别鸣谢社区小伙伴:

  • @wangbo的Code Review
  • @stdpain在内存对齐上的问题的讨论。

最后,也希望大家多多支持Apache Doris,多多给Doris贡献代码,感恩~~

5.参考资料

Vectorization教程

SIMD

Apache Doris源代码

Doris开发手记2:用SIMD指令优化存储层的热点代码的更多相关文章

  1. Doris开发手记4:倍速性能提升,向量化导入的性能调优实践

    最近居家中,对自己之前做的一些工作进行总结.正好有Doris社区的小伙伴吐槽向量化的导入性能表现并不是很理想,就借这个机会对之前开发的向量化导入的工作进行了性能调优,取得了不错的优化效果.借用本篇手记 ...

  2. SSE图像算法优化系列三十二:Zhang\Guo图像细化算法的C语言以及SIMD指令优化

    二值图像的细化算法也有很多种,比较有名的比如Hilditch细化.Rosenfeld细化.基于索引表的细化.还有Opencv自带的THINNING_ZHANGSUEN.THINNING_GUOHALL ...

  3. Doris开发手记1:解决蛋疼的MySQL 8.0连接问题

    笔者作为Apache Doris的开发者,平时感觉相关Doris的文章写的很少.主要是很多时候不知道应该去记录一些怎么样的问题,感觉写的不好就会很慌张.新的一年,希望记录自己在Doris开发过程之中所 ...

  4. Doris开发手记3:利用CoreDump文件快速定位Doris的查询问题

    Apache Doris的BE部分是由C++编写,当出现一些内存越界,非法访问的问题时会导致BE进程的Crash.这部分的问题常常较难排查,同时也很难快速定位到对应的触发SQL,给使用者带来较大的困扰 ...

  5. 【算法随记七】巧用SIMD指令实现急速的字节流按位反转算法。

    字节按位反转算法,在有些算法加密或者一些特殊的场合有着较为重要的应用,其速度也是一个非常关键的应用,比如一个byte变量a = 3,其二进制表示为00000011,进行按位反转后的结果即为110000 ...

  6. if-then-else、loop控制语句在SIMD指令下的后端指令生成实现--笔记

    作者:Yaong 出处:https://www.cnblogs.com/yaongtime/p/14111134.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此 ...

  7. 用Netty开发中间件:高并发性能优化

    用Netty开发中间件:高并发性能优化 最近在写一个后台中间件的原型,主要是做消息的分发和透传.因为要用Java实现,所以网络通信框架的第一选择当然就是Netty了,使用的是Netty 4版本.Net ...

  8. [分享]源代码&开发手记:SAE应用“车百科” (Python + SAE + Bottle + Bootstrap) - Bottle - Python4cn(news, jobs)

    [分享]源代码&开发手记:SAE应用"车百科" (Python + SAE + Bottle + Bootstrap) - Bottle - Python4cn(news, ...

  9. HoloLens开发手记 - HoloLens真机上手简评

    千呼万唤始出来,终于今天拿到了HoloLens真机. 使用体验 使用自带的应用录制了一段使用视频,如下 设备概览 包装盒 本体 试戴 实际效果 GalaxyExplorer试玩 全息图像贴到现实场景表 ...

随机推荐

  1. Linux 系统定时任务:crontab,anacron

    Linux 系统定时任务:crontab,anacron 一.Cron 服务 1. 启动服务 service cron start 2. 关闭服务 service cron stop 3. 重启服务 ...

  2. python基础之错误、调试(异常处理)

    在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的. 有的错误是用户输入造成的,比如让用 ...

  3. STM32进阶日志1

    一 工程习惯 ①必须模块化编程-一个功能一个CH分开,一个对象一个结构体; ②习惯使用bsp.c/bsp.h,BSP板级支持包源文件; ③多使用#define 来定义IO口与硬件相关特性,方便修改; ...

  4. Nginx下配置Https 配置文件(vue)

    #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #erro ...

  5. Synchronize 和 volatile 的区别

    1. 在应用层面来讲 a. volatile是线程同步的轻量级实现,所以volatile的性能要比synchronize好: volatile只能用于修饰变量,synchronize可以用于修饰方法. ...

  6. Api网关Kong集成Consul做服务发现及在Asp.Net Core中的使用

    写在前面   Api网关我们之前是用 .netcore写的 Ocelot的,使用后并没有完全达到我们的预期,花了些时间了解后觉得kong可能是个更合适的选择. 简单说下kong对比ocelot打动我的 ...

  7. react-redux 源码浅析

    react-redux 版本号 7.2.3 react-redux 依赖的库: "dependencies": { "@babel/runtime": &quo ...

  8. 【六】K8s-Pod 水平自动扩缩实践(简称HPA)

    一.概述 Pod 水平自动扩缩(Horizontal Pod Autoscaler)简称 HPA,HPA 可以根据 CPU 利用率进行自动伸缩 Pod 副本数量,除了 CPU 利用率,也可以基于其他应 ...

  9. AI推理与Compiler

    AI推理与Compiler AI芯片编译器能加深对AI的理解, AI芯片编译器不光涉及编译器知识,还涉及AI芯片架构和并行计算如OpenCL/Cuda等.如果从深度学习平台获得IR输入,还需要了解深度 ...

  10. CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)

    CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...