不想写昨天晚上cf的比赛题目所以来写题解摸摸鱼

题目大意

有一个在长度为\(k\)的正整数序列\(b\)上进行的游戏,一开始一个棋子放在位置\(1\),假如当前棋子的位置为\(x\),你可以做如下两种操作:

  1. 给\(b_x\)减少\(1\),要求操作后\(b_x\)还是正整数
  2. 把棋子移动到\([x+1,\min(x+m,k)]\)

无法操作的人就输了。现在两个人轮流做游戏,你要判断先手还是后手胜利。

给你一个长度为\(n\)的序列\(a\),你要支持如下两种操作:

  1. 区间加
  2. 查询给定区间内进行的游戏是否是先手必胜的,游戏不实际进行(这个查询不改变区间内的数的值)

做法

首先我们只考虑给定一个序列,上面进行的游戏如何判断先后手必胜状态。

这看着很像限制了取石子数量的单个堆上的Nim游戏。但是偶数位置有一些不同。

先来画一画SG图:(结点标号为\((x, b_x)\))

假如目前棋子放在一个值为偶数的位置,那么先手必胜:记后面可以转移到的位置的SG函数值的\(MEX\)为\(MEX\)(表述好怪),那么\(b_x=1\)时当前的SG函数值一定是\(MEX\),\(b_x=2\)是 \(MEX+1\),\(b_x=3\)又是\(MEX\),以此类推。所以值为偶数的位置一定是必胜的。

然后假如没有偶数值的位置的话,序列的状态应该看起来像这样:(W为必胜,L为必败,下同)

\[WWWLWW...WWWLWWWLWWWL
\]

那么在\(W\)位置的值假如是偶数,显然对每个结点没有任何影响,假如在\(L\)位置有一个偶数值呢?比如\(WWWLWWWL\)的第一个\(L\)位置,现在被改成了偶数值,也就是变成\(W\)了,那么结果为\(WWLWWWWL\),也就是相当于\(L\)位置被往前传递了。

因为每\(M\)(此处\(M\)为题目中的\(m+1\),表示循环节,下同)个位置会有一个\(L\)位置,那么在\(L\)位置之前的第一个和它的距离模\(M\)为\(0\)的偶数值位置会向前传递一次\(L\)位置。

接下来考虑如何维护区间的信息。

由于只有奇偶性影响答案,所以首先我们只需要维护\(01\)序列表示奇偶性就行。那么区间加一个奇数就相当于翻转\(01\)。现在要维护的区间信息有:区间长度\(len\)、区间翻转懒标记\(tag\)。

然后我们需要支持区间合并和查询答案,所以还要维护一点东西:假设\(X\)会向前传递\(L\)位置(\(X\in {0,1}\),为序列上某一位的值,对称维护是为了翻转操作考虑),假设最后一个\(X\)和序列末尾的距离为\(D\),那么会有多少个\(X\)向前传递\(L\)位置,记作\(cnt_{X,D}\)。

有了\(len\)和\(cnt_{X,D}\),我们可以计算出区间最前面的\(L\)位置和区间开头的距离(包含\(L\)位置自身,因为有\(L\)被传递到了整个区间的前面的情况)为\((len-D-cnt_{X,D})\mod M\)。先手必胜当且仅当:\(len-cnt_{0,0} \neq 1\)。

然后合并区间也比较方便,直接枚举右侧子区间的\(X\)和\(D\),那么新区间的\(cnt\)就为:

\[cnt_{X,D}=rcnt_{X,D}+lcnt_{X,(M-(rlen-D-rcnt_{X,D}))\mod M};
\]

区间长度直接相加,区间翻转就交换\(cnt_0\)和\(cnt_1\),接下来就线段树维护这些信息即可。

代码

#include<bits/stdc++.h>
using namespace std; int m; struct node{
int len,tag,cnt[2][6];
node(){
len=tag=0;
memset(cnt,0,sizeof(cnt));
}
node(int x){
len=1;
tag=0;
memset(cnt,0,sizeof(cnt));
cnt[x][0]=1;
}
void flip(){
tag^=1;
swap(cnt[0],cnt[1]);
}
void pushdown(node &l,node &r){
if(tag){
l.flip();
r.flip();
tag=0;
}
}
void merge(const node &l,const node &r){
len=l.len+r.len;
tag=0;
for(int v=0;v<2;v++)
for(int i=0;i<m;i++){
cnt[v][i]=r.cnt[v][i]+l.cnt[v][(m-(r.len-i-r.cnt[v][i])%m)%m];
}
}
bool win(){
return (len-cnt[0][0])%m!=1;
}
}; typedef long long ll; struct SegTree{
int sz;
vector<node> dat; void build(ll *a,int n,int id,int l,int r){
if(l==r){
if(l<=n){
dat[id]=node(a[l]&1);
}
return;
}
build(a,n,id<<1,l,l+r>>1);
build(a,n,id<<1|1,(l+r>>1)+1,r);
dat[id].merge(dat[id<<1],dat[id<<1|1]);
} SegTree(int _sz,ll *a){
sz=1;
while(sz<_sz)sz<<=1;
dat.resize(sz<<1);
build(a,_sz,1,1,sz);
} void upd(int id,int l,int r,int ql,int qr){
if(qr<l||r<ql)return;
if(ql<=l&&r<=qr){
dat[id].flip();
return;
}
dat[id].pushdown(dat[id<<1],dat[id<<1|1]);
upd(id<<1,l,l+r>>1,ql,qr);
upd(id<<1|1,(l+r>>1)+1,r,ql,qr);
dat[id].merge(dat[id<<1],dat[id<<1|1]);
} void upd(int l,int r){
upd(1,1,sz,l,r);
} node qry(int id,int l,int r,int ql,int qr){
if(qr<l||r<ql)return node();
if(ql<=l&&r<=qr){
return dat[id];
}
dat[id].pushdown(dat[id<<1],dat[id<<1|1]);
node res;
res.merge(qry(id<<1,l,l+r>>1,ql,qr),qry(id<<1|1,(l+r>>1)+1,r,ql,qr));
return res;
} bool qry(int l,int r){
return qry(1,1,sz,l,r).win();
}
}; int n,q;
ll a[200005]; int main(){ ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0); cin>>n>>m>>q;
m++;
for(int i=1;i<=n;i++)cin>>a[i];
SegTree st(n,a);
while(q--){
int t,l,r;
ll x;
cin>>t>>l>>r;
if(t==1){
cin>>x;
if(x&1)st.upd(l,r);
}else{
cout<<(st.qry(l,r)?"1\n":"2\n");
}
} return 0;
}

Codeforces 1076G Array Game 题解的更多相关文章

  1. Codeforces 1076G - Array Game(博弈论+线段树)

    Codeforces 题面传送门 & 洛谷题面传送门 一道 hot tea--听讲解时半懂不懂因为不知道题目意思,最后终究还是琢磨出来了( 首先注意到对于每个 \(a_i\),它具体是什么并不 ...

  2. Codeforces Round #543 Div1题解(并不全)

    Codeforces Round #543 Div1题解 Codeforces A. Diana and Liana 给定一个长度为\(m\)的序列,你可以从中删去不超过\(m-n*k\)个元素,剩下 ...

  3. Codeforces Round #545 Div1 题解

    Codeforces Round #545 Div1 题解 来写题解啦QwQ 本来想上红的,结果没做出D.... A. Skyscrapers CF1137A 题意 给定一个\(n*m\)的网格,每个 ...

  4. Codeforces Round #539 Div1 题解

    Codeforces Round #539 Div1 题解 听说这场很适合上分QwQ 然而太晚了QaQ A. Sasha and a Bit of Relax 翻译 有一个长度为\(n\)的数组,问有 ...

  5. [Codeforces Round #461 (Div2)] 题解

    [比赛链接] http://codeforces.com/contest/922 [题解] Problem A. Cloning Toys          [算法] 当y = 0 ,   不可以 当 ...

  6. Codeforces 7E - Defining Macros 题解

    目录 Codeforces 7E - Defining Macros 题解 前言 做法 程序 结尾 Codeforces 7E - Defining Macros 题解 前言 开始使用博客园了,很想写 ...

  7. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  8. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  9. Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力

    Codeforces 1108E2 E2. Array and Segments (Hard version) Description: The only difference between eas ...

随机推荐

  1. 【模板】二分图最大匹配(匈牙利算法)/洛谷P3386

    题目链接 https://www.luogu.com.cn/problem/P3386 题目大意 给定一个二分图,其左部点的个数为 \(n\),右部点的个数为 \(m\),边数为 \(e\),求其最大 ...

  2. Spring中的InitializingBean与DisposableBean

    InitializingBean顾名思义,应该是初始化Bean相关的接口. 先看一下该接口都定义了哪些方法: public interface InitializingBean { void afte ...

  3. JDBC(1):JDBC介绍

    一,JDBC介绍 SUN公司为了简化.统一对数据库的操作,定义了一套Java操作数据库的规范(接口),称之为JDBC.这套接口由数据库厂商去实现,这样,开发人员只需要学习jdbc接口,并通过jdbc加 ...

  4. shell脚本实现网站日志分析统计

    如何用shell脚本分析与统计每天的访问日志,并发送到电子邮箱,以方便每天了解网站情况.今天脚本小编为大家介绍一款不错的shell脚本,可以实现如上功能. 本脚本统计了:1.总访问量2.总带宽3.独立 ...

  5. RPC 框架

    RPC 谁能用通俗的语言解释一下什么是 RPC 框架? - 远程过程调用协议RPC(Remote Procedure Call Protocol) RPC就是要像调用本地的函数一样去调远程函数. 推荐 ...

  6. Appium获取toast消息(二)

    刚接触appium进行移动端设备的UI自动化,在遇到toast消息的时候很是苦恼了一阵,最后通过强大的搜索引擎找到了个相对解决方法,废话不多说,直接贴代码↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ ...

  7. 【Word】自动化参考文献-交叉引用

    第一步:设置参考文献标号 开始-定义新编号格式中,定义参考文献式的方框编号: 这里注意不要把他原来的数字去掉 第二步:选择交叉引用 插入-交叉引用: 第三步:更新标号 如果更新标号,使用右键-更新域. ...

  8. 访问Github速度很慢以及解决方法(系统通用)

    原因分析1,CDN,Content Distribute Network,可以直译成内容分发网络,CDN解决的是如何将数据快速可靠从源站传递到用户的问题.用户获取数据时,不需要直接从源站获取,通过CD ...

  9. 【Fastjson】Fastjson反序列化由浅入深

    Fastjson真-简-介 fastjson是由alibaba开发并维护的一个json工具,以其特有的算法,号称最快的json库 fastjson的使用 首先先创一个简单的测试类User public ...

  10. $(document).ready()与window.onload的区别,站在三个维度回答问题

    1.执行时机 window.onload必须等到页面内包括图片的所有元素加载完毕后才能执行.         $(document).ready()是DOM结构绘制完毕后就执行,不必等到加载完毕. 2 ...