Codeforces 1076G Array Game 题解
不想写昨天晚上cf的比赛题目所以来写题解摸摸鱼
题目大意
有一个在长度为\(k\)的正整数序列\(b\)上进行的游戏,一开始一个棋子放在位置\(1\),假如当前棋子的位置为\(x\),你可以做如下两种操作:
- 给\(b_x\)减少\(1\),要求操作后\(b_x\)还是正整数
- 把棋子移动到\([x+1,\min(x+m,k)]\)
无法操作的人就输了。现在两个人轮流做游戏,你要判断先手还是后手胜利。
给你一个长度为\(n\)的序列\(a\),你要支持如下两种操作:
- 区间加
- 查询给定区间内进行的游戏是否是先手必胜的,游戏不实际进行(这个查询不改变区间内的数的值)
做法
首先我们只考虑给定一个序列,上面进行的游戏如何判断先后手必胜状态。
这看着很像限制了取石子数量的单个堆上的Nim游戏。但是偶数位置有一些不同。
先来画一画SG图:(结点标号为\((x, b_x)\))

假如目前棋子放在一个值为偶数的位置,那么先手必胜:记后面可以转移到的位置的SG函数值的\(MEX\)为\(MEX\)(表述好怪),那么\(b_x=1\)时当前的SG函数值一定是\(MEX\),\(b_x=2\)是 \(MEX+1\),\(b_x=3\)又是\(MEX\),以此类推。所以值为偶数的位置一定是必胜的。
然后假如没有偶数值的位置的话,序列的状态应该看起来像这样:(W为必胜,L为必败,下同)
\]
那么在\(W\)位置的值假如是偶数,显然对每个结点没有任何影响,假如在\(L\)位置有一个偶数值呢?比如\(WWWLWWWL\)的第一个\(L\)位置,现在被改成了偶数值,也就是变成\(W\)了,那么结果为\(WWLWWWWL\),也就是相当于\(L\)位置被往前传递了。
因为每\(M\)(此处\(M\)为题目中的\(m+1\),表示循环节,下同)个位置会有一个\(L\)位置,那么在\(L\)位置之前的第一个和它的距离模\(M\)为\(0\)的偶数值位置会向前传递一次\(L\)位置。
接下来考虑如何维护区间的信息。
由于只有奇偶性影响答案,所以首先我们只需要维护\(01\)序列表示奇偶性就行。那么区间加一个奇数就相当于翻转\(01\)。现在要维护的区间信息有:区间长度\(len\)、区间翻转懒标记\(tag\)。
然后我们需要支持区间合并和查询答案,所以还要维护一点东西:假设\(X\)会向前传递\(L\)位置(\(X\in {0,1}\),为序列上某一位的值,对称维护是为了翻转操作考虑),假设最后一个\(X\)和序列末尾的距离为\(D\),那么会有多少个\(X\)向前传递\(L\)位置,记作\(cnt_{X,D}\)。
有了\(len\)和\(cnt_{X,D}\),我们可以计算出区间最前面的\(L\)位置和区间开头的距离(包含\(L\)位置自身,因为有\(L\)被传递到了整个区间的前面的情况)为\((len-D-cnt_{X,D})\mod M\)。先手必胜当且仅当:\(len-cnt_{0,0} \neq 1\)。
然后合并区间也比较方便,直接枚举右侧子区间的\(X\)和\(D\),那么新区间的\(cnt\)就为:
\]
区间长度直接相加,区间翻转就交换\(cnt_0\)和\(cnt_1\),接下来就线段树维护这些信息即可。
代码
#include<bits/stdc++.h>
using namespace std;
int m;
struct node{
int len,tag,cnt[2][6];
node(){
len=tag=0;
memset(cnt,0,sizeof(cnt));
}
node(int x){
len=1;
tag=0;
memset(cnt,0,sizeof(cnt));
cnt[x][0]=1;
}
void flip(){
tag^=1;
swap(cnt[0],cnt[1]);
}
void pushdown(node &l,node &r){
if(tag){
l.flip();
r.flip();
tag=0;
}
}
void merge(const node &l,const node &r){
len=l.len+r.len;
tag=0;
for(int v=0;v<2;v++)
for(int i=0;i<m;i++){
cnt[v][i]=r.cnt[v][i]+l.cnt[v][(m-(r.len-i-r.cnt[v][i])%m)%m];
}
}
bool win(){
return (len-cnt[0][0])%m!=1;
}
};
typedef long long ll;
struct SegTree{
int sz;
vector<node> dat;
void build(ll *a,int n,int id,int l,int r){
if(l==r){
if(l<=n){
dat[id]=node(a[l]&1);
}
return;
}
build(a,n,id<<1,l,l+r>>1);
build(a,n,id<<1|1,(l+r>>1)+1,r);
dat[id].merge(dat[id<<1],dat[id<<1|1]);
}
SegTree(int _sz,ll *a){
sz=1;
while(sz<_sz)sz<<=1;
dat.resize(sz<<1);
build(a,_sz,1,1,sz);
}
void upd(int id,int l,int r,int ql,int qr){
if(qr<l||r<ql)return;
if(ql<=l&&r<=qr){
dat[id].flip();
return;
}
dat[id].pushdown(dat[id<<1],dat[id<<1|1]);
upd(id<<1,l,l+r>>1,ql,qr);
upd(id<<1|1,(l+r>>1)+1,r,ql,qr);
dat[id].merge(dat[id<<1],dat[id<<1|1]);
}
void upd(int l,int r){
upd(1,1,sz,l,r);
}
node qry(int id,int l,int r,int ql,int qr){
if(qr<l||r<ql)return node();
if(ql<=l&&r<=qr){
return dat[id];
}
dat[id].pushdown(dat[id<<1],dat[id<<1|1]);
node res;
res.merge(qry(id<<1,l,l+r>>1,ql,qr),qry(id<<1|1,(l+r>>1)+1,r,ql,qr));
return res;
}
bool qry(int l,int r){
return qry(1,1,sz,l,r).win();
}
};
int n,q;
ll a[200005];
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin>>n>>m>>q;
m++;
for(int i=1;i<=n;i++)cin>>a[i];
SegTree st(n,a);
while(q--){
int t,l,r;
ll x;
cin>>t>>l>>r;
if(t==1){
cin>>x;
if(x&1)st.upd(l,r);
}else{
cout<<(st.qry(l,r)?"1\n":"2\n");
}
}
return 0;
}
Codeforces 1076G Array Game 题解的更多相关文章
- Codeforces 1076G - Array Game(博弈论+线段树)
Codeforces 题面传送门 & 洛谷题面传送门 一道 hot tea--听讲解时半懂不懂因为不知道题目意思,最后终究还是琢磨出来了( 首先注意到对于每个 \(a_i\),它具体是什么并不 ...
- Codeforces Round #543 Div1题解(并不全)
Codeforces Round #543 Div1题解 Codeforces A. Diana and Liana 给定一个长度为\(m\)的序列,你可以从中删去不超过\(m-n*k\)个元素,剩下 ...
- Codeforces Round #545 Div1 题解
Codeforces Round #545 Div1 题解 来写题解啦QwQ 本来想上红的,结果没做出D.... A. Skyscrapers CF1137A 题意 给定一个\(n*m\)的网格,每个 ...
- Codeforces Round #539 Div1 题解
Codeforces Round #539 Div1 题解 听说这场很适合上分QwQ 然而太晚了QaQ A. Sasha and a Bit of Relax 翻译 有一个长度为\(n\)的数组,问有 ...
- [Codeforces Round #461 (Div2)] 题解
[比赛链接] http://codeforces.com/contest/922 [题解] Problem A. Cloning Toys [算法] 当y = 0 , 不可以 当 ...
- Codeforces 7E - Defining Macros 题解
目录 Codeforces 7E - Defining Macros 题解 前言 做法 程序 结尾 Codeforces 7E - Defining Macros 题解 前言 开始使用博客园了,很想写 ...
- Educational Codeforces Round 64 部分题解
Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...
- Educational Codeforces Round 64部分题解
Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...
- Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力
Codeforces 1108E2 E2. Array and Segments (Hard version) Description: The only difference between eas ...
随机推荐
- Ubuntu 14.04 升级到 Ubuntu16.04
Ubuntu 14.04 升级到 Ubuntu16.04 1). 更改source.list 源 (24条消息) Ubuntu16.04 source.list更改源_dylan的博客-CSDN博客_ ...
- Java实现读取文件
目录 Java实现读取文件 1.按字节读取文件内容 使用场景 2.按字符读取文件内容 使用场景 3.按行读取文件内容 使用场景 4.随机读取文件内容 使用场景 Java实现读取文件 1.按字节读取文件 ...
- 大数据学习day14-----第三阶段-----scala02------1. 元组 2.类、对象、继承、特质 3.函数(必须掌握)
1. 元组 映射是K/V对偶的集合,对偶是元组的最简单的形式,元组可以装着多个不同类型的值 1.1 特点 元组相当于一个特殊的数组,其长度和内容都可变,并且数组中可以装任何类型的数据,其主要用处就是存 ...
- API接口设计之token、timestamp、sign 具体架构与实现(APP/小程序,传输安全)
Java生鲜电商平台-API接口设计之token.timestamp.sign 具体设计与实现 说明:在实际的业务中,难免会跟第三方系统进行数据的交互与传递,那么如何保证数据在传输过程中的安全呢(防窃 ...
- Equinox OSGi服务器应用程序的配置步骤 (支持JSP页面)
本文介绍在Eclipse里如何配置一个简单的基于Eclipse Equinox OSGi实现的Web应用程序,在它的基础上可以构造更加复杂的应用,本文使用的是Eclipse 3.3.1版本,如果你的E ...
- IDE搬进浏览器里——JetBrains Projector
发展 提起 JetBrains,你会想到什么?各路强大的 IDE,比如 Android Studio.IDEA.WebStorm--这些对于开发者来说耳熟能详的产品都出自这家公司,这些 IDE 的功能 ...
- js 时间戳转换为年月日时分秒的格式
<script type="text/javascript"> var strDate = ''; $(function(){ // 获取时间戳 var nowDate ...
- SQL->Python->PySpark计算KS,AUC及PSI
KS,AUC 和 PSI 是风控算法中最常计算的几个指标,本文记录了多种工具计算这些指标的方法. 生成本文的测试数据: import pandas as pd import numpy as np i ...
- Win7远程连接问题:凭据不工作 & 没有授权此用户账户
一 您的凭据不工作 1.问题描述 win7系统远程桌面到某个电脑的一个账户名为admin 的用户,但提示"您的凭据不工作,之前连到 *.*.*.*的凭据无法使用,请输入新凭据",即 ...
- Python中冷门但非常好用的内置函数
Python中有许多内置函数,不像print.len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性 Counter collections在pyt ...