"如果一个算法在MNIST上不work,那么它就根本没法用;而如果它在MNIST上work,它在其他数据上也可能不work"。

—— 马克吐温

上一篇文章我们实现了一个MNIST手写数字识别的程序,通过一个简单的两层神经网络,就轻松获得了98%的识别成功率。这个成功率不代表你的网络是有效的,因为MNIST实在是太简单了,我们需要更复杂的数据集来检验网络的有效性!这就有了Fashion-MNIST数据集,它采用10种服装的图片来取代数字0~9,除此之外,其图片大小、数量均和MNIST一致。

上篇文章的代码几乎不用改动,只要改个获取原始图片文件的文件夹名称即可。

程序运行结果识别成功率大约为82%左右。

我们可以对网络进行调整,看能否提高识别率,具体可用的方法:

1、增加网络层

2、增加神经元个数

3、改用其它激活函数

试验结果表明,不管如何调整,识别率始终上不去多少。可见该网络方案已经碰到了瓶颈,如果要大幅度提高识别率必须要采取新的方案了。

下篇文章我们将介绍卷积神经网络(CNN)的应用,通过CNN来处理图像数据将是一个更好、更科学的解决方案。

由于本文代码和上一篇文章的代码高度一致,这里就不再详细说明了。全部代码如下:

 /// <summary>
/// 采用神经网络处理Fashion-MNIST数据集
/// </summary>
public class NN_MultipleClassification_Fashion_MNIST
{
private readonly string TrainImagePath = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\train";
private readonly string TestImagePath = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\test";
private readonly string train_date_path = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\train_data.bin";
private readonly string train_label_path = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\train_label.bin"; private readonly int img_rows = 28;
private readonly int img_cols = 28;
private readonly int num_classes = 10; // total classes public void Run()
{
var model = BuildModel();
model.summary(); model.compile(optimizer: keras.optimizers.Adam(0.001f),
loss: keras.losses.SparseCategoricalCrossentropy(),
metrics: new[] { "accuracy" }); (NDArray train_x, NDArray train_y) = LoadTrainingData();
model.fit(train_x, train_y, batch_size: 1024, epochs: 20); test(model);
} /// <summary>
/// 构建网络模型
/// </summary>
private Model BuildModel()
{
// 网络参数
int n_hidden_1 = 128; // 1st layer number of neurons.
int n_hidden_2 = 128; // 2nd layer number of neurons.
float scale = 1.0f / 255; var model = keras.Sequential(new List<ILayer>
{
keras.layers.InputLayer((img_rows,img_cols)),
keras.layers.Flatten(),
keras.layers.Rescaling(scale),
keras.layers.Dense(n_hidden_1, activation:keras.activations.Relu),
keras.layers.Dense(n_hidden_2, activation:keras.activations.Relu),
keras.layers.Dense(num_classes, activation:keras.activations.Softmax)
}); return model;
} /// <summary>
/// 加载训练数据
/// </summary>
/// <param name="total_size"></param>
private (NDArray, NDArray) LoadTrainingData()
{
try
{
Console.WriteLine("Load data");
IFormatter serializer = new BinaryFormatter();
FileStream loadFile = new FileStream(train_date_path, FileMode.Open, FileAccess.Read);
float[,,] arrx = serializer.Deserialize(loadFile) as float[,,]; loadFile = new FileStream(train_label_path, FileMode.Open, FileAccess.Read);
int[] arry = serializer.Deserialize(loadFile) as int[];
Console.WriteLine("Load data success");
return (np.array(arrx), np.array(arry));
}
catch (Exception ex)
{
Console.WriteLine($"Load data Exception:{ex.Message}");
return LoadRawData();
}
} private (NDArray, NDArray) LoadRawData()
{
Console.WriteLine("LoadRawData"); int total_size = 60000;
float[,,] arrx = new float[total_size, img_rows, img_cols];
int[] arry = new int[total_size]; int count = 0; DirectoryInfo RootDir = new DirectoryInfo(TrainImagePath);
foreach (var Dir in RootDir.GetDirectories())
{
foreach (var file in Dir.GetFiles("*.png"))
{
Bitmap bmp = (Bitmap)Image.FromFile(file.FullName);
if (bmp.Width != img_cols || bmp.Height != img_rows)
{
continue;
} for (int row = 0; row < img_rows; row++)
for (int col = 0; col < img_cols; col++)
{
var pixel = bmp.GetPixel(col, row);
int val = (pixel.R + pixel.G + pixel.B) / 3; arrx[count, row, col] = val;
arry[count] = int.Parse(Dir.Name);
} count++;
} Console.WriteLine($"Load image data count={count}");
} Console.WriteLine("LoadRawData finished");
//Save Data
Console.WriteLine("Save data");
IFormatter serializer = new BinaryFormatter(); //开始序列化
FileStream saveFile = new FileStream(train_date_path, FileMode.Create, FileAccess.Write);
serializer.Serialize(saveFile, arrx);
saveFile.Close(); saveFile = new FileStream(train_label_path, FileMode.Create, FileAccess.Write);
serializer.Serialize(saveFile, arry);
saveFile.Close();
Console.WriteLine("Save data finished"); return (np.array(arrx), np.array(arry));
} /// <summary>
/// 消费模型
/// </summary>
private void test(Model model)
{
Random rand = new Random(1); DirectoryInfo TestDir = new DirectoryInfo(TestImagePath);
foreach (var ChildDir in TestDir.GetDirectories())
{
Console.WriteLine($"Folder:【{ChildDir.Name}】");
var Files = ChildDir.GetFiles("*.png");
for (int i = 0; i < 10; i++)
{
int index = rand.Next(1000);
var image = Files[index]; var x = LoadImage(image.FullName);
var pred_y = model.Apply(x);
var result = argmax(pred_y[0].numpy()); Console.WriteLine($"FileName:{image.Name}\tPred:{result}");
}
}
} private NDArray LoadImage(string filename)
{
float[,,] arrx = new float[1, img_rows, img_cols];
Bitmap bmp = (Bitmap)Image.FromFile(filename); for (int row = 0; row < img_rows; row++)
for (int col = 0; col < img_cols; col++)
{
var pixel = bmp.GetPixel(col, row);
int val = (pixel.R + pixel.G + pixel.B) / 3;
arrx[0, row, col] = val;
} return np.array(arrx);
} private int argmax(NDArray array)
{
var arr = array.reshape(-1); float max = 0;
for (int i = 0; i < 10; i++)
{
if (arr[i] > max)
{
max = arr[i];
}
} for (int i = 0; i < 10; i++)
{
if (arr[i] == max)
{
return i;
}
} return 0;
}
}

【相关资源】

源码:Git: https://gitee.com/seabluescn/tf_not.git

项目名称:NN_MultipleClassification_Fashion_MNIST

目录:查看TensorFlow.NET机器学习入门系列目录

TensorFlow.NET机器学习入门【6】采用神经网络处理Fashion-MNIST的更多相关文章

  1. TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归

    上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量 ...

  2. TensorFlow.NET机器学习入门【4】采用神经网络处理分类问题

    上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三 ...

  3. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

  4. TensorFlow.NET机器学习入门【7】采用卷积神经网络(CNN)处理Fashion-MNIST

    本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建, ...

  5. TensorFlow.NET机器学习入门【8】采用GPU进行学习

    随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习.本文介绍如何在GPU环境下使用TensorFlow.NET. TensorFlow.NET使用GPU非常的简单,代码不用做任何修改 ...

  6. TensorFlow.NET机器学习入门【0】前言与目录

    曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. ...

  7. TensorFlow.NET机器学习入门【1】开发环境与类型简介

    项目开发环境为Visual Studio 2019 + .Net 5 创建新项目后首先通过Nuget引入相关包: SciSharp.TensorFlow.Redist是Google提供的TensorF ...

  8. TensorFlow.NET机器学习入门【2】线性回归

    回归分析用于分析输入变量和输出变量之间的一种关系,其中线性回归是最简单的一种. 设: Y=wX+b,现已知一组X(输入)和Y(输出)的值,要求出w和b的值. 举个例子:快年底了,销售部门要发年终奖了, ...

  9. 45、Docker 加 tensorflow的机器学习入门初步

    [1]最近领导天天在群里发一些机器学习的链接,搞得好像我们真的要搞机器学习似的,吃瓜群众感觉好神奇呀. 第一步 其实也是最后一步,就是网上百度一下,Docker Toolbox,下载下来,下载,安装之 ...

随机推荐

  1. c学习 - 算法

    简介: 一个程序包括两方面内容:数据结构.算法 数据结构:对数据的描述,包括数据的类型和数据的组织形式 算法:对操作的描述,即操作步骤 (程序=算法+数据结构) 算法是灵魂,数据结构是加工对象,语言是 ...

  2. linux ln用法

    这是linux中一个非常重要命令,请大家一定要熟悉.它的功能是为某一个文件在另外一个位置建立一个同不的链接,这个命令最常用的参数是-s,具体用法是:ln -s 源文件 目标文件 这是linux中一个非 ...

  3. js调用高德地图API获取地理信息进行定位

    <script type="text/javascript" src="http://webapi.amap.com/maps?v=1.3&key=(需要自 ...

  4. jQuery 的两种语法

    文档就绪事件(文档加载完成之后才执行jQuer代码): 第一种: $(document).ready(function() { // jQuery 代码.... }); 第二种: $(function ...

  5. 并行Louvain社区检测算法

    因为在我最近的科研中需要用到分布式的社区检测(也称为图聚类(graph clustering))算法,专门去查找了相关文献对其进行了学习.下面我们就以这篇论文IPDPS2018的文章[1]为例介绍并行 ...

  6. Nginx配置FTP

    目录 一.简介 二.配置 一.简介 ftp有单独的服务,但配置并不轻松.相对于比较熟悉的nginx,做ftp要容易很多. 二.配置 添加一个server字段 server { listen 8888; ...

  7. c#中Array,ArrayList 与List<T>的区别、共性与转换

    本文内容来自我写的开源电子书<WoW C#>,现在正在编写中,可以去WOW-Csharp/学习路径总结.md at master · sogeisetsu/WOW-Csharp (gith ...

  8. android 使用 perfetto 抓取atrace

    最近项目的原因需要抓自定义的一些atrace,发现使用google 自带的systrace python脚本抓出来的log使用chrome已经打不开了. 想着用用比较时髦的perfetto吧,发现无论 ...

  9. SP1798 ASSIST - Assistance Required 题解

    Content 有一个足够长的数列 \(a\),是一个首项为 \(2\),公差为 \(1\) 的等差递增数列.另有一个初始为空的数列 \(b\). 重复进行如下操作: 假设当前数列 \(a\) 第一项 ...

  10. Java高级:条件队列与同步器Synchronizer的原理+AQS的应用

    14.构建自定义的同步工具 类库中包含了许多存在状态依赖性的类,例如FutureTask,Semaphore和BlockingQueue等.在这些类中的一些操作中有着基于状态的前提条件,例如,不能从一 ...