Part IV 一元函数积分学

不定积分定义

\(\forall x\in I,\ 使{F}'(x)=f(x)成立,则称F(x)在f(x)在I上的一个原函数。全体原函数就叫不定积分,记成:\int f(x)dx=F(x)+C\)

定积分定义

\(\int_{a}^{b} f(x)dx\)

不定积分与定积分的几何意义

\(\int f(x)dx为函数族,\int_{a}^{b} f(x)dx 为面积代表值\)

牛顿-莱布尼兹公式 / N-L 公式

\(\int_{a}^{b} f(x)dx =F(x)\mid_{x=a}^{x=b}=F(b)-F(a)\)

基本积分公式

\(\int x^kdx=\frac{1}{k+1}x^{k+1}+C\)

\(
k\neq1 \begin{cases}
\int\frac{1}{x^2}dx=-\frac{1}{x}+C \\
\int \frac{1}{\sqrt{x}}dx=2\sqrt{x}+C
\end{cases}
\)

\(\int \frac{1}{x}dx = ln|x|+C\)

\(\int a^xdx=\frac{1}{lna}a^x+C,a>0, a\neq1\)

\(\int e^xdx=e^x+C\)

\(\int sinxdx=-cosx+C\)

\(\int cosxdx=sinx+C\)

\(\int tanxdx=-ln|cosx|+C\)

\(\int cotxdx=ln|sinx|+C\)

\(\int secxdx=ln|secx + tanx|+C\)

\(\int cscxdx=ln|cscx - cotx|+C\)

\(\int sec^2xdx=-cotx+C\)

\(\int secxtanxdx=secx+C\)

\(\int secxcotxdx=-cscx+C\)

\(\int \frac{1}{\sqrt{1-x^2}}dx=arcsinx+C\)

\(\int \frac{1}{\sqrt{a^2-x^2}}dx=arcsin\frac{x}{a}+C\)

\(\int \frac{1}{\sqrt{a^2+x^2}}dx=ln(x+\sqrt{a^2+x^2})+C\)

\(\int \frac{1}{\sqrt{x^2-a^2}}dx=ln(x+\sqrt{x^2-a^2})+C\)

\(\int \frac{1}{1+x^2}dx=arctanx+C\)

\(\int \frac{1}{a^2+x^2}dx=\frac{1}{a}arctan{\frac{x}{a}}+C\)

\(\int \frac{1}{a^2-x^2}dx=\frac{1}{2a}ln{\frac{a+x}{a-x}}+C\)

\(\int \frac{1}{x^2-a^2}dx=\frac{1}{2a}ln{\frac{x-a}{x+a}}+C\)

\(\int \sqrt{a^2-x^2}dx=\frac{a^2}{2}arcsin{\frac{x}{a}}+\frac{x}{2}\sqrt{a^2-x^2}+C\)

点火公式(华里士公式)

  • $ I_n=\int_{\frac{\pi}{2}}{0}sinnxdx=\int_{\frac{\pi}{2}}{0}cosnxdx=\begin{cases}

    \frac{n-1}{n}\cdot \frac{n-3}{n-2} \cdot\cdot\cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} & n为正整数 \

    \frac{n-1}{n}\cdot \frac{n-3}{n-2} \cdot\cdot\cdot \frac{4}{5} \cdot \frac{2}{3} & n为大于1的正奇数

    \end{cases}$
  • 偶数时点火成功乘 \(\frac{\pi}2\),奇数时点火失败以 1 停止

积分-换元法的三板斧

  • 当凑微分法不成功时,考虑换元,从而使题目从复杂变简单
  1. 三角换元

    • \(三角换元--当被积函数f(x)含有\sqrt{a^2-x^2}, \sqrt{a^2+x^2}, \sqrt{x^2-a^2}\)
    1. \(\sqrt{a^2-x^2} \Rightarrow x=asint,(-\frac{\pi}{2}<t<\frac{\pi}{2})\)
    2. \(\sqrt{a^2+x^2} \Rightarrow x=atant,(-\frac{\pi}{2}<t<\frac{\pi}{2})\)
    3. \(\sqrt{x^2-a^2} \Rightarrow x=asect,\begin{cases}x>0,0\leq t\leq \frac{\pi}{2}\\ x<0,\frac{\pi}{2}\leq t \leq \pi\end{cases}\)
    4. Note:\(若见到\sqrt{ax^2+bx+c},要先化为\sqrt{\phi^2(x)-k^2},\sqrt{k^2-\phi^2(x)},\sqrt{\phi^2(x)+k^2},再做三角换元\)
  2. 倒带换

    \((x=\frac{1}{t})---可用于分子次数明显低于分母次数的情况\)

  3. 复杂部分换元——令复杂部分=t

    \(\begin{cases}\sqrt[n]{ax+b}ax+b=t,\sqrt{\frac{ax+b}{cx+d}}=t,\sqrt{ae^{bx}+c}=t,(根式代换)\\ a^x,e^x=t,(指数代换) \\ lnx=t,(对数代换)\\ arcsinx,arctanx=t,(反三角函数代换)\end{cases}\)

分部积分法

\(\int udv=uv- \int vdu (前面的积分困难,后面的积分简单)\)

反对幂指三,排前面的求导,排后面的积分

有理函数积分法

  1. 定义:\(形如\int \frac{P_n(x)}{Q_m(x)}dx,(n<m)的积分\)
  2. \(将\frac{P_n(x)}{Q_m(x)}拆成若干最简有理分式之和\)
  3. 拆分原则
    1. \(Q_m(x)分解出(ax+b)^k\Rightarrow 产生k项\):

      \(\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \cdot\cdot\cdot + \frac{A_k}{(ax+b)^k},k=1,2 \cdot \cdot \cdot\)
    2. \(Q_m(x)分解出(px^2+qx+r)^k \Rightarrow 产生k项\):

      \(\frac{A_1x+B_1}{px^2+qx+r} + \frac{A_2x+B_2}{(px^2+qx+r)^2} + \cdot\cdot\cdot + \frac{A_kx+B_k}{(px^2+qx+r)^k},k=1,2 \cdot\cdot\cdot\)

积分中值定理

\(若函数f(x)在闭区间[a,b]上连续,则\exists \xi \in (a,b),使得\int_a^bf(x) = f(\xi)(b-a)\)

\(若函数f(x)在闭区间[a,b]上连续,g(x)在闭区间[a,b]上不变号且可积,则\exists \xi \in (a,b),使得\int_a^bf(x)g(x) = f(\xi)\int_a^bg(x)\)

定积分的计算

\(\int_a^bf(x)dx=F(b)-F(a)\)

  1. 先按四大积分法求出F(x)
  2. 带入上下限,要注意换元时的细节:

    \(对于\int_a^bf(x)dx=\int_{\phi^{-1}(a)}^{\phi^{-1}(b)}f[\phi(t)]{\phi}'(t)dt, (令x=\phi(t));且要求{\phi}'(t) 连续,且x=\phi(t)不超过区间[a,b]\)

用积分表达和计算平面图形的面积

\(y=y_1(x), y=y_2(x), x=a, x=b, (a < b) 所围成的平面图形的面积:\)

\(S=\int_a^b|y_2(x)-y_1(x)|dx\)

用积分表达和计算旋转体的体积

  1. \(y=y(x)与x=a,x=b, (a < b ) 及x轴所围图形绕x轴旋转一周所得的旋转体体积为:V=\int_a^b\pi y^2(x)dx\)
  2. \(y=y(x)与x=a,x=b,( a < b ) 及x轴所围图形绕y轴旋转一周所得的旋转体体积为:V_y=\int_a^b2\pi x |y(x)|dx, (柱壳法)\)

用积分表达和计算函数的平均值---y(x)在[a,b]上的平均值是

\(y(x)在[a,b]上的平均值\overline{y}=\frac{\int_a^by(x)dx}{b-a}\)

[数学]高数部分-Part IV 一元函数积分学的更多相关文章

  1. [数学]高数部分-Part VII 微分方程

    Part VII 微分方程 回到总目录 Part VII 微分方程 微分方程的概念 一阶微分方程求解-变量可分离型 一阶微分方程求解-齐次型 一阶微分方程求解-一阶线性型 二阶常系数齐次D.E.求解: ...

  2. [数学]高数部分-Part V 多元函数微分学

    Part V 多元函数微分学 回到总目录 Part V 多元函数微分学 多元函数微分的极限定义 多元函数微分的连续性 多元函数微分的偏导数 z=f(x, y) 多元函数微分-链式求导规则 多元函数-高 ...

  3. [数学]高数部分-Part VI 重积分

    Part VI 重积分 回到总目录 Part VI 重积分 二重积分的普通对称性 二重积分的轮换对称性(直角坐标系下) 二重积分直角坐标系下的积分方法 二重积分极坐标系下的积分方法 二重积分中值定理 ...

  4. [数学]高数部分-Part III 中值定理与一元微分学应用

    Part III 中值定理与一元微分学应用 回到总目录 Part III 中值定理与一元微分学应用 1. 中值定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 柯西.拉格朗日.罗尔三者间的关系 ...

  5. [数学]高数部分-Part I 极限与连续

    Part I 极限与连续 回到总目录 Part I 极限与连续 一.极限 泰勒公式 基本微分公式 常用等价无穷小 函数极限定义 数列极限数列极限 极限的性质 极限的唯一性 极限的局部有限性 极限的局部 ...

  6. 高数解题神器:拍照上传就出答案,这个中国学霸做的AI厉害了 | Demo

    一位叫Roger的中国学霸小哥的拍照做题程序mathAI一下子火了,这个AI,堪称数学解题神器. 输入一张包含手写数学题的图片,AI就能识别出输入的数学公式,然后给出计算结果. 不仅加减乘除基本运算, ...

  7. 期权定价公式:BS公式推导——从高数和概率论角度

    嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.

  8. Contest 高数题 樹的點分治 樹形DP

    高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...

  9. linux 服务器所支持的最大句柄数调高数倍(与服务器的内存数量相关)

    https://github.com/alibaba/p3c/blob/master/阿里巴巴Java开发手册(详尽版).pdf 2. [推荐]调大服务器所支持的最大文件句柄数(File Descri ...

随机推荐

  1. 了解 Linkerd Service Mesh 架构

    从较高的层次上看,Linkerd 由一个控制平面(control plane) 和一个 数据平面(data plane) 组成. 控制平面是一组服务,提供对 Linkerd 整体的控制. 数据平面由在 ...

  2. java加密方式

    加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容.大体上分为双向加密和单向加密,而双向加密又分为对称加密和非对称加密(有些 ...

  3. ReactiveCocoa操作方法-重复

    retry重试      只要失败,就会重新执行创建信号中的block,直到成功. __block int i = 0; [[[RACSignal createSignal:^RACDisposabl ...

  4. Give You My Best Wishes

    亲耐滴IT童鞋们: 感谢大家一直以来的支持,因为有你们的支持,才有我这么"拼"的动力!!爱你们哟 OC的学习已经告一段落,希望大家通过阅读这几篇浅薄的随笔,能够寻找到解决问题的方法 ...

  5. mysql读写分离(proxySQL) lamp+proxysql+nfs

    先在主从节点安装mysql [root@master-mariadb ~]# yum install mariadb-server -y [root@slave-mariadb ~]# yum ins ...

  6. shiro免认证的路径配置

    – ?:匹配一个字符,如/admin? 将匹配/admin1,但不匹配/admin 或/admin/:– *:匹配零个或多个字符串,如/admin 将匹配/admin./admin123,但不匹配/a ...

  7. 添加用户的jsp页面

    <%@ page contentType="text/html;charset=UTF-8" language="java" %><!-- H ...

  8. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...

  9. 『与善仁』Appium基础 — 24、等待activity出现

    目录 1.什么是等待activity出现 2.wait_activity()方法 3.获取当前页面的activity方法 4.综合练习 1.什么是等待activity出现 在启动APP的时候,要配置包 ...

  10. 如何查看Python的版本号

    一.如何查看Python的版本号 win+r输入cmd在输入:python --version回车即可