Solution -「OurOJ 46544」漏斗计算
\(\mathcal{Description}\)
Link.
定义一个运算结点 \(u\) 有两个属性:当前容量 \(x_u\)、最大容量 \(V_u\)。提供以下单元操作:
I
读入一个整数 \(x\),令新结点 \(u=(x,x)\)。F u
装满 \(u\) 结点,即令 \(x_u=V_u\)。E u
清空 \(u\) 结点,即令 \(x_u=0\)。C s
令新结点 \(u=(0,s)\)。M u
令新结点 \(v=(0,x_u)\)。T u v
不断令 \(x_u\leftarrow x_u-1,x_v\leftarrow x_v-1\) 直到 \(x_u=0\) 或 \(x_v=V_v\)。
构造不超过 \(10^4\) 次操作的一个运算方法,输入 \(a,b\),输出 \(ab\bmod 2^{18}\)。
\(0\le a,b\le 10^5\)。
\(\mathcal{Solution}\)
貌似是瓶子国的某个点?反正很离谱就是了。
首先观察操作,我们只有一个二元运算 \(T(u,v)\),必然只能用它实现逻辑模块。
再从问题入手,不难想到可以龟速乘计算 \(ab\),过程中若值 \(\ge 2^{18}\),则减去 \(2^{18}\)。那么我们至少需要实现这些模块:
加法器:输入结点 \(u,v\),输出 \(w\),满足 \(x_w=x_u+x_v\)。
逻辑减法器:输入结点 \(u,v\),输出 \(w\),若 \(x_u\ge x_v\),\(x_w=x_u-x_v\);否则 \(x_w=x_u\)。
加法器比较方便:新建一个大容量点,把两个加数复制一份倒进去就好。先实现一个复制当前容量器:
inline int copyNum( const int u ) {
printf( "M %d\n", u ), ++node;
printf( "F %d\n", node );
return node;
}
再实现加法器:
inline int add( const int u, const int v ) {
printf( "C 1000000000\n" ); int res = ++node;
printf( "T %d %d\n", copyNum( u ), res );
printf( "T %d %d\n", copyNum( v ), res );
return res;
}
逻辑减法?先要判断大小关系。而 \(T(u,v)\) 之后 \(x'_u=\max\{x_u-x_v,0\}\),我们只需要判断一个结点的当前容量是否为 \(0\)。好消息是,我们能够实现逻辑非器:
inline int logicNot( const int u ) {
printf( "M %d\n", u ), ++node;
puts( "C 1" ), ++node;
printf( "F %d\n", node );
printf( "T %d %d\n", node, node - 1 );
return node;
}
内部逻辑比较易懂就不讲啦。在此基础上,实现普通减法器和逻辑减法器:
inline int sub( const int u, const int v ) {
printf( "M %d\n", v ); int tmp = ++node;
printf( "T %d %d\n", copyNum( u ), tmp );
return node;
}
inline PII logicSub( int u, int v ) {
int f = logicNot( sub( u = add( u, 1 ), v ) );
rep ( i, 1, 18 ) f = add( f, f );
printf( "M %d\n", f ), f = ++node;
printf( "T %d %d\n", v = copyNum( v ), f );
return { u = sub( sub( u, v ), 1 ), f };
}
逻辑减法器返回的 first
即减法结果,second
用于求解时重复利用。
底层方法实现之后,剩下的工作就简单了:输入 \(a,b\),计算 \(2a,4a,\cdots,2^{16}a\),枚举 \(b\) 是否大于等于 \(2^{16}\dots2^0\),若是,则减去,答案加上对应的权。都能用以逻辑非为基础的模块实现。
操作次数复杂度为 \(\mathcal O(\log^2 V)\)(倍增以及内部的逻辑减法),我实现的常数较大,不过封装成模块很易懂就是了。(
\(\mathcal{Code}\)
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef std::pair<int, int> PII;
#define fi first
#define se second
int node, mod;
namespace StandardModuleLibrary {
inline int logicNot( const int u ) {
printf( "M %d\n", u ), ++node;
puts( "C 1" ), ++node;
printf( "F %d\n", node );
printf( "T %d %d\n", node, node - 1 );
return node;
}
inline int copyNum( const int u ) {
printf( "M %d\n", u ), ++node;
printf( "F %d\n", node );
return node;
}
inline int add( const int u, const int v ) {
printf( "C 1000000000\n" ); int res = ++node;
printf( "T %d %d\n", copyNum( u ), res );
printf( "T %d %d\n", copyNum( v ), res );
return res;
}
inline int sub( const int u, const int v ) {
printf( "M %d\n", v ); int tmp = ++node;
printf( "T %d %d\n", copyNum( u ), tmp );
return node;
}
inline PII logicSub( int u, int v ) {
int f = logicNot( sub( u = add( u, 1 ), v ) );
rep ( i, 1, 18 ) f = add( f, f );
printf( "M %d\n", f ), f = ++node;
printf( "T %d %d\n", v = copyNum( v ), f );
return { u = sub( sub( u, v ), 1 ), f };
}
} using namespace StandardModuleLibrary;
int main() {
freopen( "liver.out", "w", stdout );
int x, y;
printf( "C 1\nF 1\n" ), node = 1; // element 1.
printf( "C 262144\nF 2\n" ), mod = node = 2; // module.
puts( "I" ), x = ++node;
puts( "I" ), y = ++node;
int buc[30] = { x }, pwr[30] = {};
int ans = ++node; puts( "C 1000000000" );
pwr[0] = ++node, printf( "C 1\nF %d\n", node );
rep ( i, 1, 16 ) {
pwr[i] = ++node, printf( "C %d\nF %d\n", 1 << i, node );
PII shit( logicSub( add( buc[i - 1], buc[i - 1] ), mod ) );
buc[i] = shit.fi;
}
per ( i, 16, 0 ) {
PII r( logicSub( y, pwr[i] ) );
int x = r.se;
rep ( j, 1, 18 - i ) x = add( x, x );
printf( "M %d\n", x ), x = ++node;
printf( "T %d %d\n", buc[i], x ), y = r.fi;
ans = logicSub( add( ans, buc[i] ), mod ).fi;
}
printf( "P %d\n", ans );
return 0;
}
Solution -「OurOJ 46544」漏斗计算的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...
- Solution -「WC 2022」秃子酋长
\(\mathscr{Description}\) Link. (It's empty temporarily.) 给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r ...
- Solution -「CEOI 2017」「洛谷 P4654」Mousetrap
\(\mathscr{Description}\) Link. 在一个含 \(n\) 个结点的树形迷宫中,迷宫管理者菈米莉丝和一只老鼠博弈.老鼠初始时在结点 \(y\),有且仅有结点 \(x\ ...
- Solution -「CEOI 2006」「洛谷 P5974」ANTENNA
\(\mathcal{Description}\) Link. 给定平面上 \(n\) 个点,求最小的能覆盖其中至少 \(m\) 个点的圆半径及一个可能的圆心. \(n\le500\),坐 ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
随机推荐
- Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=256M; support was removed in 8.0
目录 启动一个Java Standalone程序时报错 解决办法 解释 参考 启动一个Java Standalone程序时报错 Java HotSpot(TM) 64-Bit Server VM wa ...
- js跨域请求解决方案
什么是跨域? 跨域是指一个域下的文档或脚本试图去请求另一个域下的资源,这里跨域是广义的. 广义的跨域: 1.) 资源跳转: A链接.重定向.表单提交 2.) 资源嵌入: <link>.&l ...
- FastDFS的应用
一.定义 FastDFS是由淘宝的余庆先生所开发的一个轻量级.高性能的开源分布式文件系统.用纯C语言开发,功能丰富: 文件存储 文件同步 文件访问(上传.下载) 存取负载均衡 在线扩容 适合有大容量存 ...
- ThinkPad S5立体声混响以及语音识别
smartaudio里面改成语音识别就可以是立体声混响了.但是微软语音识别在国内依然不好用,微软服务在国内太卡了. (联想总是多此一举,各种乱起八糟的软件,给用户造成困难,以前老机子驱动无线网卡锁在L ...
- CSS基本语法(二)
目录 CSS基本语法(二) 八.CSS复合选择器 1.后代选择器** 2.子选择器 3.并集选择器** 4.伪类选择器 链接伪类选择器 :focus伪类选择器 总结 九.CSS的元素显示样式 1.概念 ...
- gorm中动态使用表名
用户表(前台.后台) type User struct { ID int `gorm:"primaryKey;autoIncrement"` Name sql.NullString ...
- golang中gomodule讲解
0. GOMODULES模式 1. GOPATH的缺点 1. 无版本控制概念 2. 无法同步一致第三方版本号 3. 无法指定当前项目引用的第三方版本号 2. go1.11版本之后可以使用GoModul ...
- ddos攻击是什么,如何防御
DDoS(Distributed Denial of Service,分布式拒绝服务) 定义: 主要通过大量合法的请求占用大量网络资源,从而使合法用户无法得到服务的响应,是目前最强大.最难防御的攻击之 ...
- MySql下载与安装(部署)
一:MySQL介绍 1.MySQL简介 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下公司.MySQL 最流行的关系型数据库管理系统,在 WEB ...
- K8S配置多集群访问
中文官档: http://docs.kubernetes.org.cn/823.html 背景:我们通过会有多个k8s集群,例如集群(cn-k8s)和集群(jp-k8s),那个就需要有一台服务器可以同 ...