spyglass DFT
clock_11
内部 generated clocks 在shift mode 不被 testclock 控制。
Fix
Async_07
在shift mode, flip-flop的异步set/reset source 是active的。
Fix
例2.
spyglass DFT的更多相关文章
- (转)SpyGlass工具介绍
Spyglass工具有五大模块: lint, CDC(多时钟域检查), LP(低功耗),Constraint(约束),DFT(可测试性). 一,在RTL层面上预估芯片性能,从而引导设计人员开发出更加 ...
- 转载:一幅图弄清DFT与DTFT,DFS的关系
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...
- 频域分辨率与DFT,DCT,MDCT理解
搞了这么久音频算法,有些细节还没有很清楚. 比如DFT和DCT有哪些区别,DFT系数为什么会是对称的,同样帧长的数据,各自的频域分辨率是多少? 今天决定搞清楚这些问题, 首先DFT的系数对称(2N点的 ...
- 傅里叶:有关FFT,DFT与蝴蝶操作(转 重要!!!!重要!!!!真的很重要!!!!)
转载地址:http://blog.renren.com/share/408963653/15068964503(作者 : 徐可扬) 有没有!!! 其实我感觉这个学期算法最难最搞不懂的绝对不是动态规划 ...
- CDC spyglass
SoC中会有着几百的clock domains,millions的async data crossing. Glitch等cdc问题是netlist level simulation的主要目的. CD ...
- DFT basics
DFT测试中,最重要的部分还是sequential circuit的内部状态的测试. 起初ad hoc的方法用来提高testability,可以提高局部的coverage,但并不是一个系统性的方法. ...
- DFT设计绪论
DFT设计的主要目的是为了将defect-free的芯片交给客户. 产品质量,通常使用Parts Per million(PPM)来衡量. 但是随着IC从SSI到VLSI的发展,在test上花销的时间 ...
- FS,FT,DFS,DTFT,DFT,FFT的联系和区别
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...
- 【转】小解DCT与DFT
这学期当本科生数字图像处理的助教老师,为使学生更好地理解DCF和DFT之间的关系给出三题,大家可以思考一下,看一下自己对这些最简单的变换是否真正理解. 1.求解序列f(n)=[2,3,3,4,4,3, ...
随机推荐
- Eclipse中安装配置Gradle
Gradle是以Groovy语言为基础,面向Java应用为主.基于DSL(领域特定语言)语法的自动化构建工具. gradle对多工程的构建支持很出色,工程依赖是gradle的第一功能. gradle支 ...
- LNMP zabbix 4.4 安装
硬件配置需求 环境 平台 CPU/内存 数据库 硬盘 监控主机数 小型 CentOS 2CPU/1GB MySQL.InnoDB 普通 100 中型 CentOS 2CPU/2GB MySQL.Inn ...
- P1721 [NOI2016] 国王饮水记 题解
蒟蒻的第一篇黑题题解,求过. 题目链接 题意描述 这道题用简洁的话来说,就是: 给你 \(n\) 个数字,你可以让取其中任意若干个数字,每次操作,都会使所有取的数字变为取的数字的平均数,并且你最多只能 ...
- Appium问题解决方案(7)- Could not find 'adb.exe' in PATH. Please set the ANDROID_HOME environment variable with the Android SDK root directory path
背景:运行代码提示找不到ADB An unknown server-side error occurred while processing the command. Original error: ...
- VUE006. 前端跨域代理服务器ProxyTable概述与配置
概述 使用 vue-cli 工具生成一个 vue 项目: vue init webpack my-project-vue 在生成的项目结构里,会有一个 index.js 文件.在这个文件里 ...
- 10 个不为人知的Python冷知识
1. 省略号也是对象 ... 这是省略号,在Python中,一切皆对象.它也不例外. 在 Python 中,它叫做 Ellipsis . 在 Python 3 中你可以直接写-来得到这玩意. > ...
- Docker 安装 MySQL5.6
方法一.docker pull mysql查找Docker Hub上的mysql镜像 #docker search mysql 这里我们拉取官方的镜像,标签为5.6 #docker pull mysq ...
- POJ3061——Subsequence(尺取法)
Subsequence POJ - 3061 给定长度为n的数列整数a0,a1,a2-an-1以及整数S.求出总和不小于S的连续子序列的长度的最小值,如果解不存在输出0. 反复推进区间的开头和末尾,来 ...
- 做一个U盘的学习路线
最近想研究一个U盘,然后顺便熟悉一下USB协议.因为USB协议比较复杂, 常用的复杂外设除了WiFi,Ethernet,SDIO和USB这些就是USB了,学习USB的时候肯定要拿一个东西下手,所以简单 ...
- 如何实现Orchard Core CMS的全文索引
Orchard Core提供了Lucene功能,允许您在网站上进行全文搜索.大多数情况下,在运行博客或简单的代理网站时,您可能需要在页面内容中进行搜索.在Orchard Core中,您可以使用Liqu ...