分布式深度学习DDL解析
分布式深度学习DDL解析
一.概述
给一个庞大的GPU集群,在实际的应用中,现有的大数据调度器会导致长队列延迟和低的性能,该文章提出了Tiresias,即一个GPU集群的调度器,专门适应分布式深度学习任务,该调度器能够有效率的调度并且合适地放置深度学习任务以减少他们的任务完成时间(JCT(Job Completion Time)),一个深度学习任务执行的时间通常是不可预知的,该文章提出两种调度算法,基于局部信息的离散化二维Gittins索引(Discretized Two Dimensional Gittins index)以及离散化二维LAS,对信息不可知并且能够降低平均的JCT,在实验中JCT能够快5.5倍,相比于基于Apache YARN的资源管理
我们关注数据的并行化,数据的并行化是目前流行的分布式深度学习框架的公共部分。
如上图所示,每一个Worker有一个GPU,运行本地的深度学习模型副本,训练集被划分成等大小的部分分配给Worker们,所有的任务同步训练,一个被观察到的事实是这样的架构能够更快的收敛,相比于异步的分布式训练。
固定时间的迭代
深度学习训练是按迭代的方式工作的,在每一个轮次,worker要做一次前向和反向的计算,接着worker将本地的结果互相更新深度学习模型,称之为模型聚集(Model
Aggregation),由于每一个迭代的计算时间都是差不多的,故迭代的时间是高度可预测的。
参数服务器架构
参数服务器,简称PS(Parameter
Server),这种架构是最流行的模型聚集的方法,参数服务器掌握主要的深度学习模型副本,使用从所有worker那里得到的本地结果来更新模型,然后worker在每个迭代的一开始拉回参数来更新本地的模型,一个深度学习任务可以有多个参数服务器。
测试和错误的探索
为了得到一个高质量的模型,需要对超参数的各种组合进行探索,称为超参数调优(hyperparameter-tuning),用户可以用AutoML等搜索工具来进行高效的探索。在AutoML中,许多带着不同超参数设置的深度学习任务被生成来训练相同的任务,其中的大多数由于随机的误差或者低质量的提升会被消除。利用一开始测试阶段的反馈,AutoML能够搜索新的参数配置以及产生大量新的任务,当然其中只有少数拥有较高的质量。
深度学习与计算系统结合是现在业界发展的趋势。Logical Clocks的CEO Jim Dowling讲述了分布式深度学习最新技术发展,以及其Hosworks开源平台。
二.分布式深度学习DDL
人工智能的需求在过去十年中显著增长,很大程度是深度学习的进步。这种增长是由深度(机器)学习技术的进步和利用硬件加速的能力推动的。然而,为了提高预测的质量和使机器学习解决方案在更复杂的应用中可行,需要大量的训练数据。尽管小型机器学习模型可以用适量的数据进行训练,但用于训练较大模型(如神经网络)的输入随着参数的数量呈指数增长。由于对处理训练数据的需求已经超过了计算机器计算能力的增长,因此需要将机器学习工作量分散到多台机器上,并将集中式系统转变为分布式系统。这些分布式系统提出了新的挑战,首先是训练过程的有效并行化和一致模型的创建。
分布式深度学习有很多好处——使用更多的GPU更快地训练模型,在许多GPU上并行超参数调优,并行消融研究以帮助理解深度神经网络的行为和性能。随着Spark 3.0的出现,GPU开始转向执行器,使用PySpark的分布式深度学习现在成为可能。然而,PySpark给迭代模型开发带来了挑战——从开发机器(笔记本电脑)开始,然后重新编写它们以运行在基于集群的环境中。
本讲座概述了分布式深度学习的技术,并提供了可用系统的概述,从而对该领域当前的最新技术进行了广泛的概述。
Jim Dowling是 Logical Clocks公司的首席执行官,也是KTH皇家理工学院的副教授。他是开源的Hopsworks平台的首席架构师,这是一个横向可扩展的机器学习数据平台。
分布式深度学习DDL解析的更多相关文章
- 使用horovod构建分布式深度学习框架
最近两周一直在尝试着分布式深度学习的架构,主要的原因一方面是几台机子全是1060卡,利用深度网络在较大数据样本上训练的效率极其低下,所以尝试着将几台机子做成分布式,看看能否提高训练效率:第二方面是有人 ...
- 分布式深度学习之DC-ASGD
本篇笔记是听刘铁岩老师做Distributed Deep Learning:New Driving Force of Artificial Intelligence报告整理而成 深度学习梯度下降公式如 ...
- Horovod 分布式深度学习框架相关
最近需要 Horovod 相关的知识,在这里记录一下,进行备忘: 分布式训练,分为数据并行和模型并行两种: 模型并行:分布式系统中的不同GPU负责网络模型的不同部分.神经网络模型的不同网络层被分配到不 ...
- (转)分布式深度学习系统构建 简介 Distributed Deep Learning
HOME ABOUT CONTACT SUBSCRIBE VIA RSS DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part ...
- [源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架
[源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 目录 [源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 0x00 摘要 0x01 架构图 ...
- [源码解析] 深度学习分布式训练框架 horovod (6) --- 后台线程架构
[源码解析] 深度学习分布式训练框架 horovod (6) --- 后台线程架构 目录 [源码解析] 深度学习分布式训练框架 horovod (6) --- 后台线程架构 0x00 摘要 0x01 ...
- [源码解析] 深度学习分布式训练框架 Horovod (1) --- 基础知识
[源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并 ...
- [源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入
[源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 目录 [源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 0x00 摘要 0 ...
- [源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么
[源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么 目录 [源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun ...
随机推荐
- 【vim】复制粘贴相关操作
复制: 首先,可以在命令模式下输入v进入自由选取模式,选择需要剪切的文字后,按下d就可以进行剪切了. 其他命令模式下剪切命令: yy:复制当前行 nyy:n表示大于1的数字,复制n行 yw:从光标处复 ...
- Hook android系统调用研究(一)
本文的博客链接:http://blog.csdn.net/qq1084283172/article/details/55657300 一.Android内核源码的编译环境 系统环境:Ubuntu 14 ...
- UVA11624大火蔓延的迷宫
题意: 给1个n*m的网格,上面有的点能走,有的点不能走(墙),然后有的点是火源,火源和人一样,每次都是上下左右四个方向蔓延,速度一样是1,火也不可以从墙上跨过去,给你人的起点,终点是只要走到 ...
- 路由协议之OSPF
目录 OSPF协议 OSPF的七种状态 OSPF的11种LSA Stub和Nssa OSPF中的防环机制 OSPF中的路由汇总和路由过滤 OSPF中的虚拟链路 虚拟链路有两种存在的意义 OSPF中的认 ...
- web php wrong nginx config
web php wrong nginx config 目录 web php wrong nginx config 题目描述 解题过程 信息收集 robots.txt hint.php Hack.php ...
- 【hugo】- hugo 监听浏览器切换title
hugo 博客 监听浏览器title 动态改变浏览器title标题 找到head.html themes/maupassant/layouts/partials/head.html 添加监听js 可以 ...
- 多线程-4.wait() notify() notifyAll() 生产者消费者模型
1.wait()方法 该方法继承于Object类.在调用obj.wait()方法后,当前线程会失去obj的锁.待其他线程调用obj.notify()或notifyAll()方法后进入锁等待池,争抢到锁 ...
- 基于任务的异步编程(Task,async,await)
这节讲一下比较高级的异步编程用法Task,以及两个异步关键字async和await. Task是在C#5.0推出的语法,它是基于任务的异步编程语法,是对Thread的升级,也提供了很多API,先看一下 ...
- 关于MySQL参数,这些你要知道
前言: 在前面一些文章中,经常能看到介绍某某参数的作用,可能有些小伙伴仍搞不清楚 MySQL 参数是啥.本篇文章我们来聊聊 MySQL 参数,学习下如何管理维护 MySQL 参数. 1.MySQL参数 ...
- 我写了一个简单的JSON序列化和反序列化的工具
背景 互联网上有许多可用的Json序列化和反序列化的工具,例如fastjson,jackson,Gson等等,那么,我为什么还要自己写一个? 项目不方便依赖其他第三方库.比如有时候我们编写SDK,考虑 ...