【C++】最长回文子串/动态规划
ACM
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1010;
char S[maxn];
int dp[maxn][maxn];
int main()
{
gets(S);
int len = strlen(S), ans = 1;
memset(dp, 0, sizeof(dp));
for (int i = 0; i < len; i++)
{
dp[i][i] = 1;
if (i < len - 1)
{
if (S[i] == S[i + 1])
{
dp[i][i + 1] = 1;
ans = 2;
}
}
}
// 状态转移方程
for (int L = 3; L <= len; L++)
{
for (int i = 0; i + L - 1 < len; i++)
{
int j = i + L - 1;
if (S[i] == S[j] && dp[i + 1][j - 1] == 1)
{
dp[i][j] = 1;
ans = L;
}
}
}
cout << ans;
system("pause");
}
核心代码
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
int getLongestPalindrome(string A, int n)
{
int maxR = 1;
// 创建dp数组
vector<vector<int>> dp;
vector<int> tmp;
tmp.insert(tmp.begin(), n, 0);
for (int i = 0; i < n; i++)
{
dp.push_back(tmp);
}
// 边界条件
for (int i = 0; i < n; i++)
{
dp[i][i] = 1;
if (i < n - 1)
{
if (A[i] == A[i + 1])
{
dp[i][i + 1] = 1;
maxR = 2;
}
}
}
// 状态转移
for (int len = 3; len <= n; len++)
{
// 枚举左端点i
for (int i = 0; i + len - 1 < n; i++)
{
int j = i + len - 1;
if (A[i] == A[j] && dp[i + 1][j - 1] == 1)
{
dp[i][j] = 1;
maxR = len;
}
}
}
return maxR;
}
};
int main()
{
string str;
cin >> str;
int n = str.length();
Solution solution;
cout << solution.getLongestPalindrome(str, n) << endl;
system("pause");
}
【C++】最长回文子串/动态规划的更多相关文章
- leetcode-5 最长回文子串(动态规划)
题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 【LeetCode】最长回文子串【动态规划或中心扩展】
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: " ...
- Leetcode(5)-最长回文子串(包含动态规划以及Manacher算法)
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &quo ...
- [LeetCode] 5. 最长回文子串 ☆☆☆(最长子串、动态规划)
最长回文子串 (动态规划法.中心扩展算法) https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang- ...
- [译]最长回文子串(Longest Palindromic Substring) Part I
[译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...
- LeetCode:Longest Palindromic Substring 最长回文子串
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- lintcode :Longest Palindromic Substring 最长回文子串
题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...
- 最长回文子串(Longest Palindromic Substring)-DP问题
问题描述: 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 . 思路分析: 动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串 ...
随机推荐
- HTTPS-自己生成数字证书
一.获取证书的途径 自签名证书,适用于开发者测试HTTPS,最快速的途径就是生成自签名证书,非常方便. Let's Encrypt证书,可以使用免费CA机构签发的证书. 使用收费CA机构签发的证书,如 ...
- eclipse查看jar包源代码
方法一:将jd-gui集成在Eclipse中 https://jingyan.baidu.com/article/b24f6c8275536686bfe5daed.html 下载2个反编译文件, ...
- php 变量和数据类型
$ 定义变量: 变量来源数学是计算机语言中能存储计算结果或能表示值抽象概念.变量可以通过变量名访问.在指令式语言中,变量通常是可变的. php 中不需要任何关键字定义变量(赋值,跟Java不同,Jav ...
- IDEA下载 使用快捷方式 以及一些小教程
IDEA下载 使用快捷方式 以及一些小教程 Idea下载 网址:链接: https://pan.baidu.com/s/1xRr3mhM6_VDHqC_w0F1MjQ 提取码: 6ypi 下载,安装方 ...
- [luogu5294]序列
也是一道保序回归的题,但思路不同于论文中模板题 考虑两个开口向上的二次函数$f(x)$和$g(x)$,求任意实数$x,y$满足$x\le y$且最小化$f(x)+g(y)$,这个最小值可以分类讨论求出 ...
- [luogu5654]基础函数练习题
答案即区间$[l,r]$的笛卡尔树上,左右子树有一个为空的点到根路径和(定义此为的该点答案)的max, 对求区间笛卡尔树复杂度为$o(n)$,无法通过,因此在全局笛卡尔树中考虑此问题 设$k$为$l$ ...
- [noi713]魔法
分治,维护一个dp数组,当递归到区间[l,r]时,需要保证这个dp数组维护的是除去[l,r]以外的dp数组维护其实很简单,就是递归左区间是先将右区间加入,然后再将左区间加入(要先复原)然后递归右区间即 ...
- [atAGC047F]Rooks
如果将$x$和$y$都离散,那么删除的点的$x_{i}$和$y_{i}$必然都组成了一个完整的区间(包括过程中) 将所有点按$x$排序,再令$f[i][j][0/1]$表示当删除完区间$[i,j]$且 ...
- 【Tool】MySQL安装
MySQL安装 2019-11-07 14:30:32 by冲冲 本机 Windows7 64bit,MySQL是 mysql-8.0.18-winx64.zip. 1.官网下载 https:// ...
- maven插件慢的解决方案
-DarchetypeCatalog=local 地址:https://www.cnblogs.com/del88/p/6286887.html