FFT模板(多项式乘法)
FFT模板(多项式乘法)
标签: FFT
扯淡
一晚上都用来捣鼓这个东西了......
这里贴一位神犇的博客,我认为讲的比较清楚了。(刚好适合我这种复数都没学的)
http://blog.csdn.net/leo_h1104/article/details/51615710
题解
不写点什么也不好,我就简单的说一下吧。
我们首先得知道DFT(离散傅里叶变换)和IDFT(逆离散傅里叶变换)。
一个多项式有很两种表示方法:
法一:\(f(x)=\sum_{i=0}^n A_i*x^i\)
法二:图像上的任(n+1)个点,如\(f(x)=x+1\)就可以用(0,1),(1,2),(2,3)来表示。
法二其实是很适合两个函数的相乘,只需要对应横坐标点的纵坐标相乘。
DFT其实就是将表示法 法一转换成法二,IDFT则相反。
假如DFT使用的点坐标基于实数,那么复杂度为\(O(n^2)\),相比较与基于复数的FFT,效率十分底下。
FFT就使用了单位根的\(0~n-1\)次方作为点的横坐标(这里n需要补成2的次幂),再利用单位根的某些性质,把规模减小一半。可以实现\(O(nlogn)\)的计算。
Code
#include<complex>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define REP(i,a,b) for(int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=0,p=1;char ch=getchar();
while(!(('0'<=ch && ch<='9') || ch=='-'))ch=getchar();
if(ch=='-')p=-1,ch=getchar();
while('0'<=ch && ch<='9')sum=sum*10+ch-48,ch=getchar();
return sum*p;
}
const int maxn=3e6+20;
int n,m,l,rev[maxn];
complex <double> a[maxn],b[maxn];
void init()
{
n=read();m=read();
REP(i,0,n)a[i]=read();
REP(i,0,m)b[i]=read();
m+=n;
for(n=1;n<=m;n<<=1)l++;
REP(i,0,n-1)rev[i]=(rev[i>>1]>>1) | ((i&1)<<(l-1));
}
const double Pi=acos(-1);
void FFT(complex <double> *p,int opt)
{
REP(i,0,n-1)if(i<rev[i])swap(p[i],p[rev[i]]);
for(int i=1;i<n;i<<=1)
{
complex <double> W(cos(Pi/i),opt*sin(Pi/i));
for(int P=i<<1,j=0;j<n;j+=P)
{
complex <double> w(1,0);
for(int k=j;k<i+j;k++,w*=W)
{
complex <double> x=p[k],y=w*p[k+i];
p[k]=x+y;
p[k+i]=x-y;
}
}
}
if(opt==-1)REP(i,0,n)p[i]/=n;
}
void doing()
{
FFT(a,1);
FFT(b,1);
REP(i,0,n)a[i]=a[i]*b[i];
FFT(a,-1);
REP(i,0,m)printf("%d ",(int)(a[i].real()+0.5));
}
int main()
{
freopen("FFT.in","r",stdin);
freopen("FFT.out","w",stdout);
init();
doing();
return 0;
}
FFT模板(多项式乘法)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...
随机推荐
- 织梦DEDE网站后台如何上传附件
如题,织梦DEDE网站后台如何上传附件?今天本人遇到这样的问题,在网站后台里点击一番后,成功上传了一个pdf文件和doc文件,特来分享经验. 工具/原料 织梦dede网站 doc文件 方法/步骤 1 ...
- 003_JS基础_面向对象基础
3.1 对象 引入:在js中表示一个人的信息(name, gender, age)通过var申明三个变量,但是这样使用基本数据类型的变量,他们是互相独立的,没有联系: 此时就需要使用对象,对象是 ...
- git只添加指定类型的文件的.gitignore规则
#忽略根目录下的所有文件 * #忽略子目录下的所有文件 /* #包含目录 !*/ #指定不忽略的文件 !*.c !*.h #忽略根目录下的文件 /build/ /appveyor/ /pear/ /s ...
- Web前端学习(1):上网的过程与网页的本质
"众里寻他千百度"--但是在信息化时代,我们只需要动动手指百度一下,google一下,便可以在网络上寻得我们想要查找的信息.我们或许都知道要如何在网上获得自己所需信息,但是上网的过 ...
- 关于Serializable的serialVersionUID
在实现了Serializable接口的class中,需要声明一个long serialVersionUID,用来标明当前class的版本号,但很多人在编程时,总是不原意去声明这个serialVersi ...
- windows下搭建virtualenv虚拟环境
操作系统:windows7 旗舰版 64bit pip install django==1.9.1pip install virtualenv 虚拟环境工具>pip install virtua ...
- Linuxc - 操作系统内存分配
静态变量是存储在数据段的,在函数中可以共用. 全局变量也是存储在数据段的,在全局中可以共用. 指针变量本质上是地址,数组变量本质上也是地址. 数组是可靠的,不可变的地址.指针变量是不可靠的,可变的.数 ...
- 自己搭建CA颁发证书做https加密网站
192.168.10.187 CA服务器 192.168.10.190 web服务器 (1)搭建CA cd /etc/pki/CA 在这个目录下创建serial和index.txt两个文件 echo ...
- string用法总结
要想使用标准C++中的string类,必须要包含#include <string> 注意是<string>而不是<string.h>,带.h的是C语言中的头文件 s ...
- Git知识总览(四) git分支管理之rebase 以及 cherry-pick相关操作
上篇博客聊了<Git知识总览(三) 分支的创建.删除.切换.合并以及冲突解决>,本篇博客我们主要来看一下 rebase 变基相关的操作.rebase 操作和 merge 操作最终都可以达到 ...