BZOJ权限题

Luogu

题意:给出n,m,求:

\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)\mbox{为质数}]
\]

多组数据,\(n\le 10^7\)

sol

开式子吧。

\[ans=\sum_{T=1}^{n}\lfloor \frac nT\rfloor\lfloor \frac mT\rfloor\sum_{p|T}\mu(\frac Tp)
\]

其中\(p\)是质数

“是质数”这个条件就很烦,我们就只能\(O(\sum_{i=1}^{n}\lfloor \frac ni\rfloor)\)地去做。

但是\(10^7\)又过不去怎么办呢?

记得曾经yyb说:质数密度大概是\(\frac {1}{10}\)

哦,\(10^7\)的\(\frac {1}{10}\)那就是\(10^6\)?

然后\(O(\sum_{i=1}^{n}\lfloor \frac ni\rfloor)\)就可以跑啦?

所以直接爆跑。

code

时限改了,现在可以AC了。

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 10000000;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int pri[N+5],tot,zhi[N+5],mu[N+5],s[N+5];
void Mobius()
{
zhi[1]=mu[1]=1;
for (int i=2;i<=N;i++)
{
if (!zhi[i]) pri[++tot]=i,mu[i]=-1;
for (int j=1;j<=tot&&i*pri[j]<=N;j++)
{
zhi[i*pri[j]]=1;
if (i%pri[j]) mu[i*pri[j]]=-mu[i];
else break;
}
}
for (int j=1;j<=tot;j++)
for (int i=pri[j];i<=N;i+=pri[j])
s[i]+=mu[i/pri[j]];
for (int i=1;i<=N;i++)
s[i]+=s[i-1];
}
int main()
{
Mobius();
int T=gi();
while (T--)
{
int n=gi(),m=gi();
if (n>m) swap(n,m);
int i=1;ll ans=0;
while (i<=n)
{
int j=min(n/(n/i),m/(m/i));
ans+=1ll*(n/i)*(m/i)*(s[j]-s[i-1]);
i=j+1;
}
printf("%lld\n",ans);
}
return 0;
}

[BZOJ2820][Luogu2257]YY的GCD的更多相关文章

  1. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  2. 【BZOJ2820】YY的GCD

    [BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...

  3. 【反演复习计划】【bzoj2820】YY的GCD

    这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...

  4. 【BZOJ2820】YY的GCD [莫比乌斯反演]

    YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...

  5. BZOJ2820:YY的GCD——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2820 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  6. BZOJ2820/LG2257 YY的GCD 莫比乌斯反演

    问题描述 BZOJ2820 LG2257 题解 求 \(\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{m}{[gcd(i,j)==p]}}\) ,其中 \(p\)为 ...

  7. 并不对劲的bzoj2820:p2257:YY的GCD

    题目大意 \(t\)(\(t\leq10^4\))组数据,给定\(n,m\)(\(n,m\leq10^6\))求 \[\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x,y)=1]\ ...

  8. 【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)

    题目: 洛谷2257 预备知识:莫比乌斯定理(懵逼乌斯定理) \(\mu*1=\epsilon\)(证bu明hui略zheng) 其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没 ...

  9. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

随机推荐

  1. scala学习

    前言 Bruce Eckel在吐槽Java,一是本身的不合理的地方太多,二是Oracle的商业目的导致Java的发布显得有点仓促,许多地方存在不合理,这样便加速了Java的不合理.此外,Bruce提到 ...

  2. 05-Git

    [Git]   [安装git] $ yum install git  #安装git $ ssh-keygen  #遇到输入符直接回车 $ cat ~/.ssh/id_rsa.pub #将这里的信息添加 ...

  3. elasticsearch 6 在 centos 6 上的安装问题

    ERROR: bootstrap checks failed max file descriptors [4096] for elasticsearch process likely too low, ...

  4. Docker安装Jenkins

    1.下载镜像 docker pull jenkins 2.生成一个容器 docker run -d --name myjenkins -p 8081:8080 -p 50000:50000  --vo ...

  5. iOS7动态调整文字大小

    iOS7添加了动态调整文字的大小,app可以通过接受通知的方式进行设置 iOS 7 introduces Dynamic Type, which makes it easy to display gr ...

  6. 删除apache注册表

    将Apache服务从系统服务中移除: 其实很多服务我们卸载软件后还会残留在服务列表里面,今天给大家提供个删除残留服务的方法注册表清除法. 1.在我的电脑上右键管理,找到看看那些服务是你不需要的,或是残 ...

  7. for 循环中的 i 变量问题

    1:如何点击每一个 li 的时候 alert 输出其index? <ul id="test"> <li>111</li> <li>2 ...

  8. MySQL数据库基础(四)(子查询与链接)

    1.子查询简介 其中,所谓的"外层查询"并不是指"查找",指的是所有SQL语句的统称:结构化查询语言(Structured Query Language),简称 ...

  9. chromedriver与chrome版本映射表(最新)

    selenium想在chrome进行跑,前提需要下载chromedriver,以下整理了chromedriver与chrome的对应关系表 chromedriver(下载地址):http://chro ...

  10. 通过 Service 访问 Pod - 每天5分钟玩转 Docker 容器技术(136)

    本节开始学习 Service.我们不应该期望 Kubernetes Pod 是健壮的,而是要假设 Pod 中的容器很可能因为各种原因发生故障而死掉.Deployment 等 controller 会通 ...