[ZJOI2014]力
推公式发现(这不是水题吗,这要推吗)
\]
\]
\]
也可以合起来FFT(懒得想)
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(2e6 + 10);
const double Pi(acos(-1));
struct Complex{
double real, image;
IL Complex(){ real = image = 0; }
IL Complex(RG double a, RG double b){ real = a; image = b; }
IL Complex operator +(RG Complex B){ return Complex(real + B.real, image + B.image); }
IL Complex operator -(RG Complex B){ return Complex(real - B.real, image - B.image); }
IL Complex operator *(RG Complex B){ return Complex(real * B.real - image * B.image, real * B.image + image * B.real); }
} A[_], B[_];
int n, N, M, l, r[_];
double q[_], E[_];
IL void FFT(RG Complex *P, RG int opt){
for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);
for(RG int i = 1; i < N; i <<= 1){
RG Complex W(cos(Pi / i), opt * sin(Pi / i));
for(RG int p = i << 1, j = 0; j < N; j += p){
RG Complex w(1, 0);
for(RG int k = 0; k < i; ++k, w = w * W){
RG Complex X = P[k + j], Y = w * P[k + j + i];
P[k + j] = X + Y; P[k + j + i] = X - Y;
}
}
}
}
int main(RG int argc, RG char *argv[]){
scanf("%d", &n);
for(RG int i = 1; i <= n; ++i) scanf("%lf", &q[i]);
for(RG int i = 1; i <= n; ++i) A[i].real = q[i], B[i].real = 1.0 / (1.0 * i * i);
for(N = 1, M = 2 * n; N <= M; N <<= 1) ++l;
for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
FFT(A, 1); FFT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = A[i] * B[i];
FFT(A, -1);
for(RG int i = 1; i <= n; ++i) E[i] = A[i].real;
for(RG int i = 0; i < N; ++i) A[i].real = A[i].image = B[i].real = B[i].image = 0;
for(RG int i = n; i; --i) A[n - i + 1].real = q[i], B[i].real = 1.0 / (1.0 * i * i);
FFT(A, 1); FFT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = A[i] * B[i];
FFT(A, -1);
for(RG int i = 1; i <= n; ++i) E[i] -= A[n - i + 1].real;
for(RG int i = 1; i <= n; ++i) printf("%.3lf\n", E[i] / N);
return 0;
}
[ZJOI2014]力的更多相关文章
- [ZJOI3527][Zjoi2014]力
[ZJOI3527][Zjoi2014]力 试题描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi.试求Ei. 输入 包含一个整数n,接下来n行每行输入一个数,第i行表示qi. 输出 有n ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 笔记-[ZJOI2014]力
[ZJOI2014]力 \[\begin{split} E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{ ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
随机推荐
- linux使用tcpdump抓包工具抓取网络数据包,多示例演示
tcpdump是linux命令行下常用的的一个抓包工具,记录一下平时常用的方式,测试机器系统是ubuntu 12.04. tcpdump的命令格式 tcpdump的参数众多,通过man tcpdump ...
- sql server两个时间段内,求出周末的量
公司有个表记录了出差(加班)的初始时间和截止时间,现在要计算出加班时间,之前的设计并没有考虑到这部分,因此本人通过sql重新计算周末数 表formmain starttime endtime 使用游标 ...
- appium+Python 启动app(三)登录
我们根据前面的知识点,用uiautomatorviewer工具来获取我们当前的元素 (注:uiautomatorviewer 是 android sdk 自带的) 知识点:appium的webdriv ...
- java-redis列表数据操作示例(二)
接上篇博文<java-redis字符类数据操作示例(一)>,redis连接管理类的代码请跳转查看. 一.列表类型缓存测试类 public class ListTest { /** * 主测 ...
- 了解一下Http常见状态码、Http协议的工作特点和原理、Http请求Post与Get的区别
HTTP协议常见状态码状态码的作用负责标记客户端请求服务器的返回结果,标记服务器端的处理是否正常,通知出现的错误等等职责,借助客户端可以知道客户端是否正常请求服务端.五大类:1XX(信息类状态码,接收 ...
- Java--JDBC连接与Django--DATABASES设置
JDBC 简介 JDBC(Java Data Base Connectivity,java 数据库连接)是一种用于执行 SQL 语句的 JavaAPI,可以为多种关系 数据库提供统一访问,它由一组用 ...
- 《android开发艺术探索》读书笔记(六)--Drawable
接上篇<android开发艺术探索>读书笔记(五)--RemoteViews [BitmapDrawable] 简单的图片 <!xml version="1.0" ...
- Swagger2 Oauth2.0 令牌 请求头
@EnableSwagger2 @Bean public Docket createRestApi() { ParameterBuilder tokenPar = new ParameterBuild ...
- 老司机教你在windows不用软件隐藏重要文件
每个人电脑里面都有些秘密,但是别人需要使用你的电脑时,有可能会看到,但是我们又不想让别人发现时,我们可以将其隐藏,那么别人就不会看到了.360文件保险柜.腾讯电脑管家等等.使用软件繁琐软件过大还会拖慢 ...
- iOS的GIF动画效果实现
引言:GIF图像格式是常见的一种动态图片格式,无论是在Web端还是在移动端都经常遇到,但是考虑目前iOS还无法原生展现GIF图片,而对于GIF的原生支持暂时也没有像JPG.PNG等图像格式支持得这么全 ...