[ZJOI2014]力
推公式发现(这不是水题吗,这要推吗)
\]
\]
\]
也可以合起来FFT(懒得想)
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(2e6 + 10);
const double Pi(acos(-1));
struct Complex{
double real, image;
IL Complex(){ real = image = 0; }
IL Complex(RG double a, RG double b){ real = a; image = b; }
IL Complex operator +(RG Complex B){ return Complex(real + B.real, image + B.image); }
IL Complex operator -(RG Complex B){ return Complex(real - B.real, image - B.image); }
IL Complex operator *(RG Complex B){ return Complex(real * B.real - image * B.image, real * B.image + image * B.real); }
} A[_], B[_];
int n, N, M, l, r[_];
double q[_], E[_];
IL void FFT(RG Complex *P, RG int opt){
for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);
for(RG int i = 1; i < N; i <<= 1){
RG Complex W(cos(Pi / i), opt * sin(Pi / i));
for(RG int p = i << 1, j = 0; j < N; j += p){
RG Complex w(1, 0);
for(RG int k = 0; k < i; ++k, w = w * W){
RG Complex X = P[k + j], Y = w * P[k + j + i];
P[k + j] = X + Y; P[k + j + i] = X - Y;
}
}
}
}
int main(RG int argc, RG char *argv[]){
scanf("%d", &n);
for(RG int i = 1; i <= n; ++i) scanf("%lf", &q[i]);
for(RG int i = 1; i <= n; ++i) A[i].real = q[i], B[i].real = 1.0 / (1.0 * i * i);
for(N = 1, M = 2 * n; N <= M; N <<= 1) ++l;
for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
FFT(A, 1); FFT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = A[i] * B[i];
FFT(A, -1);
for(RG int i = 1; i <= n; ++i) E[i] = A[i].real;
for(RG int i = 0; i < N; ++i) A[i].real = A[i].image = B[i].real = B[i].image = 0;
for(RG int i = n; i; --i) A[n - i + 1].real = q[i], B[i].real = 1.0 / (1.0 * i * i);
FFT(A, 1); FFT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = A[i] * B[i];
FFT(A, -1);
for(RG int i = 1; i <= n; ++i) E[i] -= A[n - i + 1].real;
for(RG int i = 1; i <= n; ++i) printf("%.3lf\n", E[i] / N);
return 0;
}
[ZJOI2014]力的更多相关文章
- [ZJOI3527][Zjoi2014]力
[ZJOI3527][Zjoi2014]力 试题描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi.试求Ei. 输入 包含一个整数n,接下来n行每行输入一个数,第i行表示qi. 输出 有n ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 笔记-[ZJOI2014]力
[ZJOI2014]力 \[\begin{split} E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{ ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
随机推荐
- 恢复linux系统文件夹颜色
/etc/DIR_COLORS 默认值 # Background color codes:# 40=black 41=red 42=green 43=yellow 44=blue 45=magenta ...
- SpringMVC常见注解
@RequestParam( value="name", require=false ) String wrap 参数绑定:require=false 表示前端对 name 这个 ...
- Yii中DataProvider的使用
1,DataProvider 什么是数据提供者 数据提供者可以获取数据,并提供给其他组件或页面使用 可以获得列的数据进行分页和排序 经常用来给数据小部件提供数据,方便用户互动地进行数据的分页与排序 实 ...
- (MonoGame从入门到放弃-1) MonoGame环境搭建
MonoGame在国内的市场应该比较小吧,工作之余想学习一下游戏开发,期间也尝试过多款游戏引擎,如 Cocos2dx Egret layabox之类的,这几个目前主推的都是Js或者ts作为开发语言. ...
- Duilib第一步(I)-简介与环境搭建
Primus gradus et cognoscetis veritatem et veritas liberabit vos. --Johannes 8:32 Introduction Duili ...
- POJ - 2912 Rochambeau 种类并查集
题意:有三组小朋友在玩石头剪刀布,同一组的小朋友出的手势是一样的.这些小朋友中有一个是裁判,他可以随便出手势.现在给定一些小朋友的关系,问能否判断出裁判,如果能最早什么时候能够找到裁判. 思路:枚举每 ...
- 初版python计算器
作业: 使用正则表达式实现计算器功能. 实现: 1.实现带括号的计算 2.实现指数.加减乘除求余等功能 先看运行结果: 请输入您的计算式: 1 - 2 * ( (60-30 +(-40.0/5) * ...
- AfxBeginThread和CreateThread具体区别
1. 具体说来,CreateThread这个函数是windows提供给用户的 API函数,是SDK的标准形式,在使用的过程 中要考虑到进程的同步与互斥的关系,进程间的同步互斥等一系列会导致操作系统死锁 ...
- win8.1中安装rabbitmq
项目测试的时候,用的是项目组linux测试机上的rabbitmq,为了方便自己随时使用,便在自己的电脑win8.1上也安装了一套,安装过程如下: 一.准备erlang和rabbitmq的安装程序: ...
- dojo拼接成CSV格式字符串
var student = "学号,姓名,年龄\n"; for(var i = 0;i<resp.items.length;i++) { student += resp.it ...